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Summary

An approximate axisymmetric method las been developed which can reliably
calculate fully viscous hypersonic flows over blunt-nosed bodies. By substituting
Maslen’s second order pressure expression for the normal momentum equation, a sim-
plified form of the viscous shock layer (VSL) equations is obtained. This approach can
solve both the subsonic and supersonic regions of the shock layer without a starting so-
lution for the shock shape. The approach is applicable to perfect gas, equilibrium, and
nonequilibrium flowfields. Since the method is fully viscous, the problems associated
with coupling a boundary-layer solution with an inviscid-layer solution are avoided.
This procedure is significantly faster than the parabolized Navier-Stokes (PNS) or
VSL solvers and would be useful in a preliminary design environment. Problems
associated with a previously developed approximate VSL technique are addressed
before extending the method to nonequilibrium calculations. Perfect gas (laminar
and turbulent), equilibrium, and nonequilibrium solutions have been generated for
air flows over several analytic body shapes. Surface heat transfer, skin friction, and
pressure predictions are comparable to VSL results. In addition, computed heating
rates are in good agreement with experimental data. The present technique generates
its own shock shape as part of its solution, and therefore could be used to provide
more accurate initial shock shapes for higher-order procedures which require starting

solutions.



ii

Table of Contents

List of Figures
List of Tables

Nomenclature
Introduction

General Analysis

2.1 Viscous Shock Layer Equations . . . ... ... . .
2.2 Maslen’s Pressure Equation . . .. .. .. .. ...
2.3 Wall Boundary Conditions . . . ... ... ... ..
2.4 Stagnation Line . . . . ... ... ... .......
24.] Viscous Shock Layer Equations . . . . . ..
242 Maslen’s Pressure Equation . . .. ... ..

Perfect Gas Analysis

3.1 State Equation . . .. ... ... ... ... ....

3.2 Thermodynamic and Transport Properties

3.3 Shock Properties . . . .. ... ... .. ......
3.4 Surface Quantities . . . . ... ... ... .....

Equilibrium Analysis

4.1 State Equation . . .. . ... ... ... . .....

1.2 Thermodynamic and Transport Properties

4.3 Shock Properties . . . ... ... ... .. .....
4.4 Surface Quantities . . ... ... ... ... ... .

Nonequilibrium Analysis

5.1 Viscous Shock Layer Kquations . . .. .. ... ..
5.2 Species Rates of Production . . . . .. ... ... .
5.3 State Equation . . . ... .. .. ... ... ...
5.4 Thermodynamic and Transport Properties
5.4.1 Thermodynamic Properties . . . ... ...
5.4.2 Transport Properties . . . . . ... ... ..
5.5 Boundary Conditions . . . . .. ... ... .....

5.5.1 Wall Values . . .. ... ... ... .....
5.5.2 Shock Properties . . . . .. ... ... ...

CONTENTS

iv

..........

.......... 30



10

CONTENTS

5.6 Stagnation Line . . . . . . ... oo
5.6.1 Viscous Shock Layer Equations . . . . ... .. ... ... ..
5.6.2 Shock Properties . . . . . . .. .o o

5.7 Surface Quantities . . . . . .. ... e

Turbulence

6.1 Viscous Shock Layer Equations . . . . .. ... ... .........

6.2 Stagnation Line . . . . . . ... ..o

6.3 Turbulence Model . . . . . . . . . . .. . e
6.3.1 Inner Layer . . . . ... .. ...
6.3.2 Outer Layer . . . . . . . . . oo i
6.3.3 Boundary Layer Edge . . . . ... ... ... ... ......
6.3.4 Transition . . . . . o 0 e e e e e e e e e e s

Shock Layer Geometry

7.1 Body Geomelry . . . .. . oo o
7.1.1 Forebody . . . . . .
7.1.2 Stagnation Line . . . . . .. .. . e
7.1.3 Ellipsoid-Cone Juncture . . . .. ... ... ... ... ..
7.14 Afterbody . . . . . .. .

7.2 Shock Shape . . . . . . . . e
7.2.1 Subsonic-Transonic Region . . . . . .. ... ..o
7.2.2 Supersonic Region . . . .. .. .. ...

7.3 Shock Layer . . . . . . . . v o
7.3.1 Calculated Thickness . . . . . . .. .. . .
7.3.2 Geometric Thickness . . . . . . . ... .. oo

7.4 Spacing Across Layer . . . . .. ... ..o oo

Method of Solution

8.1 Shock Shape . . . . . . .. .

8.2 Streamwise Momentum Linearization . . . .. ... .. ... ... ..

8.3 Equations of Standard Parabolic Form . . .. .............

8.4 Advancing the Solution . . . . . ... ... oo oo
8.4.1 Subsonic-Transonic Region . . . . . .. .. .. ... ... ...
8.4.2 Supersonic Region . . . . . ... ... oo

Results and Discussion

9.1 Perfect Gas . .« « v v v v o e e e e e e e
9.2 Equilibrium . . . ... .o
9.3 Nonequilibrium . . . . . ...

Conclusions

il

32
32
34
35

37
37
40
41
41
42
42
43

44
44
44
45
45
45
46
46
47
48
48
48
50

54
54
55
57
60
60
61

63
64
89
108

135



v CONTENTS

11 Recommendations 137
References 138
Appendices 144

A Reference Quantities 145

B Fluid Equations 147

C  Maslen’s Method 150

D  Shock Layer Thickness 154

E  Geometric Limits 156

F Shock Properties 158

F.1 Perfect Gas . . . . . . . ... ... 159
F.2 NonequilibriumFlow . . . ... .. ... ... ... ... ...... 160
F.3 Equilibrium Flow . . . . ... . ... ... . o 161

G  Chemically Reacting Flows 162
Reaction Rates 167

I Species Thermodynamic Properties 171

J Species Transport Properties 174

K  Conic Shock Shape - 176

L Cubic Shock Shape 177



LIST OF FIGURES v

List of Figures

2.1

7.1
7.2
7.3

9.1
9.2

9.3
9.4
9.5
9.6

9.7
9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

Flowfield geometry and curvilinear coordinate system.. . . . . .. .. 6
Equally-spaced lines of constant ¥ (streamlines). . .. ... ... .. 51
Equally-spaced lines of constant . . . . . . ... ... ........ 51
Equally-spaced lines of constant ,,. . . . . ... ... ... .. .... 52
Shock shape comparison for 5° sphere-cone, Rpose = 1.5 in. . . . . . . 65
Shock shape comparison for 5° sphere-cone,

R.ose = 1.5 in (overexpansion region). . . . . . . .. ..o L. 65
Heat transfer comparison for 5° sphere-cone, f,55e = 1.5 in. . . . . . 66
Body pressure comparison for 5° sphere-cone, Ry = 1.5 0. . . . . . 66
Heat transfer comparison for 5° sphere-cone,

Roosc = 1.5 in (stagnation region). . . .. .. ... .. ........ 68
Body pressure comparison for 5° sphere-cone,

Ruose = 1.5 in (stagnation region). . . . ... ... ... ... .. 68
Skin friction comnparison for 5° sphere-cone, Rpose = 1.5 00, . . . . . . 69
Skin friction comparison for 5° sphere-cone,

R,ose = 1.5 in (stagnation region). . . .. .. ... .. ... ..... 69
Pressure profile comparison for 5° sphere-cone,

Rpose = 1.5 in (stagnation line). . .. ... ... ... . ... 70
Normal velocity profile comparison for 5° sphere-cone,

R..se = 1.5 in (stagnation line). . . ... ... ............ 70
Tangential velocity profile comparison for 5° sphere-cone,

R,ose = 1.5 in (stagnation line). . . . ... ... .. ........ 71
Enthalpy profile comparison for 5° sphere-cone,

R,ose = 1.5 in (stagnation line). . . . . ... ... ... . 0L 71
Density profile comparison for 5° sphere-cone,

Rpose = 1.5 in (stagnation line). . .. .. .. .. ... ....... 72
Pressure profile comparison for 5° sphere-cone,

Rugse = 1.5in(spm40). . . .. .. ... 73
Pressure profile comparison for 5° sphere-cone,

Ruose = 1.5 dn (sp = L125). .. .. .. o oo 73
Normal velocity profile comparison for 5° sphere-cone,

Ruose = 1.5 in (sp=40). . . . . .. . 74
Normal velocity profile comparison for 5° sphere-cone,

Rogwe = 1500 (55 1125).  « e 74

Tangential velocity profile comparison for 5° sphere-cone,

Ravee = 1.5 00 (558 40). « o o oo 75



vi

9.19

9.20

9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44
9.45

9.46

LIST OF FIGURES

‘Tangential velocity profile comparison for 5° sphere-cone,

Ruose = 1.5dn (sp = 1125). . . . 0. o o 75
Enthalpy profile comparison for 5° sphere-cone,

Ropose = 1.0dn (sp=40). . . . . .. .. 76
Enthalpy profile comparison for 5° sphere-cone,

Rrose = 1.5 a0 (sp = 1125). . . . . .. . . oo 76
Heat transfer comparison for 5° sphere-cone, Rygse =9 in. . . . . .. 78
Body pressure comparison for 5° sphere-cone, Rupse = 9 in. . . . . . . 79
Skin friction comparison for 5° sphere-cone, Rppe = 9 in. . . . . . . . 79
Shock shape comparison for 15° sphere-cone, Rpose = 1.1 in. . . . . . 80
Heat transfer comparison for 15° sphere-cone, Ryupse = 1.1 tn. . . . . . 81
Heat transfer comparison for 15° sphere-cone,

R,ose = 1.1 in (stagnation region). . . .. .. ... .. ........ 81
Body pressure comparison for 15° sphere-cone, Rpose = 1.1 in. . . .. 82
Skin friction comparison for 15° sphere-cone, Rupse = 1.1 in. . . . . . 82
Pressure profile comparison for 15° sphere-cone,

Ropse =11in(sy=6.5). . ... ... ... .. ... . ... ... 84
Pressure profile comparison for 15° sphere-cone,

Rupse =11in(sp=20). . ... ... ... ... ... ... ...... 84
Normal velocity profile comparison for 15° sphere-cone,

Ruvse =1.1in(sp=06.5). ... .. ... .. ... ... ... 85
Normal velocity profile comparison for 15° sphere-cone,

Rpose =11 an(sp=20). . . .. ... .. . ... .. ... .. ... 85
Tangential velocity profile comparison for 15 sphere-cone,

Ruose = 1.1an (sp=6.5). . . ... oL 86
Tangential velocity profile comparison for 15° sphere-cone,

Rpgse = 1.1din (sp=20). . . .. .. . . 86
Enthalpy profile comparison for 15° sphere-cone,

Rupse =1.1dn sy =6.5). . .. .. . .. ... . 87
Enthalpy profile comparison for 15° sphere-cone,

Ruose = 1.1 an (85 =20). . . . . . . . 87
Heat transfer comparison for 15° sphere-cone, Rypse = 0.375 4n. . .. 88
Body pressure comparison for 15° sphere-cone, Ryope = 0.375 in. . . . 88
Skin friction comparison for 15° sphere-cone, R,05e = 0.375 in. . . .. 89
Shock shape comparison for 5° sphere-cone, R, e = 0.114 in. . . . . . 90
Heat transfer comparison for 5° sphere-cone, Ryp5e = 0.114 tn. . . . . 91
Body pressure comparison for 5° sphere-cone, Ry o5 = 0.114 4n. . . . . 91
Heat transfer comparison for 5° sphere-cone,

Rypse = 0.114 in (stagnation region). . . . . . ... .. ... ..... 92
Body pressure comparison for 5° sphere-cone,

R,ose = 0.114 in (stagnation region). . . . .. ... ... ... .... 92

Skin friction comparison for 5° sphere-cone, R, = 0.114 in. . . . . . 93



LIST OF FIGURES

9.47
9.48
9.49
9.50
9.51
9.52
9.33
9.54
9.55
9.56
9.57
9.58
9.59
9.60
9.61
9.62
9.63
9.64
9.65
9.66
9.67

9.68

9.69

Skin friction comparison for 5° sphere-cone,

Ruose = 0.114 in (stagnation region). . . . .. ... ... ...
Pressure profile comparison for 5° sphere-cone,

Rpose = 0.114 in (stagnation line). . . .. ... .. ... ......
Normal velocity profile comparison for 5° sphere-cone,

Ruose = 0.114 in (stagnation line). . . .. ... .. ..........
Tangential velocity profile comparison for 5° sphere-cone,

Ruose = 0.114 in (stagnation line). . ... .. .............
Enthalpy profile comparison for 5° sphere-cone,

Rpose = 0.114 in (stagnation line). . . .. .. ... ..........
Density profile comparison for 5° sphere-cone,

Ruose = 0.114 in (stagnation line). . . .. ... ... .........
Pressure profile comparison for 5° sphere-cone,

Rpose = 0114 dn (sp = 50). . . . . oo v et
Pressure profile comparison for 5° sphere-cone,

Rpose = 0.114 in (s, = 1350). . . . . ... .. oo

Normal velocity profile comparison for 5° sphere-cone,

Ruose = 0114 in (sp 2= 50). . . .. o v v o e
Normal velocity profile comparison for 5° sphere-cone,

Ropee = 0.114 in (5 2 1350). oo
Tangential velocity profile comparison for 5° sphere-cone,

Rppse = 0.114 dn (85 = 50). . . . . oot
Tangential velocity profile comparison for 5° sphere-cone,

Rope = 0114 10 (552 1350). oo v oo oo
Enthalpy profile comparison for 5° sphere-cone,

Rpose = 0.114 dn (sp = 50). . . .. .. oo
Enthalpy profile comparison for 5° sphere-cone,
Ruose = 0114 dn (85 & 1350). . . . . . .. oo oo

Shock shape comparison for 35.5° hyperboloid, Rpose = 3.46457 ft. . .
Heat transfer comparison for 35.5° hyperboloid, Rnose = 3.46457 ft.
Body pressure comparison for 35.5° hyperboloid, Ryose = 3.46457 ft. .
Skin friction comparison for 35.5° hyperboloid, Ruose = 3.46457 ft. . .
Pressure profile comparison for 35.5° hyperboloid,

Ropse = 346457 ft (sp = 15.5). . . . . o oo
Pressure profile comparison for 35.5° hyperboloid,

Ropse = 3.46457 ft (552 24.5). . . . o oo v v
Normal velocity profile comparison for 35.5° hyperboloid,

Rose = 346457 fi (5 15.5). o oo oo
Normal velocity profile comparison for 35.5° hyperboloid,

Ropse = 346457 ft (sp = 24.5). . . . . .. oo

Tangential velocity profile comparison for 35.5° hyperboloid,
Ropse = 3.46457 ft (sp = 15.5). . . . .. e e e e e e e

vii



viil
9.70
9.71
9.72
9.73
9.74
9.75

9.76
9.77

9.78
9.79

9.80

9.81

9.82

9.83

9.84

9.85

9.86

9.87

9.88

9.89

9.90

9.91

LIST OF FIGURES

Tangential velocity profile comparison for 35.5° hyperboloid,

Rpose = 346407 ft (sp = 24.5). . . . . .. .. 106
Enthalpy profile comparison for 35.5 hyperboloid,

Rpose = 346457 ft (so = 15.5). . . .. .. ... ... ... ... ... 107
Enthalpy profile comparison for 35.5° hyperboloid,

Rppse = 346457 ft (sp = 24.5). . . .. .. ..o, 107
Shock shape comparison for 6° sphere-cone, Rypse = 1.5 0. . . . . . . 108
Heat transfer comparison for 6° sphere-cone, R,pee = 1.5 in. . . . . . 110
Heat transfer comparison for 6° sphere-cone,

Ryose = 1.5 in (stagnation region). . . . ... ... .......... 110
Body pressure comparison for 6° sphere-cone, Rpo,e = 1.5in. . . . . . 111
Body pressure comparison for 6° sphere-conc,

R.0se = 1.5 in (stagnation region). . . . ... ... .. .. ...... 111
Skin friction comparison for 6° sphere-cone, R,,sc = 1.5 in. . . . . . . 112
Skin friction comparison for 6° sphere-cone,

R,.se = 1.5 in (stagnation region). . . . ... ... .. ... ..... 112
Pressure profile comparison for 6° sphere-cone,

R,.se = 1.5 in (stagnation line). . .. .. .. ... .. ....... 113
Normal velocity profile comparison for 6° sphere-cone,

R,ose = 1.5 in (stagnation line). . . . .. ... ... ....... .. 113
Tangential velocity profile comparison for 6° sphere-cone,

Ryose = 1.5 in (stagnation line). . . . .. .. ... .. ........ 114
Temperature profile comparison for 6° sphere-cone,

Ryose = 1.5 in (stagnation line). . . . .. ... ... . ........ 114
Density profile comparison for 6° sphere-cone,

Ryose = 1.5 in (stagnation line). . . . .. .. ... .. ........ 115
Mass fraction profile comparison for 6° sphere-cone,

R,ose = 1.5 in (stagnation line). . ... ... ... .. ... ..... 115
Pressure profile comparison for 6° sphere-cone,

Ruose = 1540 (s, =95). . .. . . 116
Normal velocity profile comparison for 6° sphere-cone,

Rivse =15 (86 =05). . . . . e 116
Tangential velocity profile comparison for 6° sphere-cone,

Ruose = 1.5n(8y=05). . . .. .. o 117
Temperature profile comparison for 6° sphere-cone,

Ruose = 1540 (85 =0). . . . . . 117
Mass fraction profile comparison for 6° sphere-cone,

Rose = 1.0 an (55 =5). . . . o o e 118
Comparison of electron concentration profiles for 6° sphere-cone,

Rpose = 1.580. . . L L e 118

Shock shape comparison for 20° sphere-cone, Ry = 1.5 in. . . . . . 120



LIST OF FIGURES ix

9.93

9.94
9.95

9.96

9.97

9.98

9.99

9.100

9.101

9.102

9.103

9.104

9.105

9.106

9.107

9.108

9.109

9.110

9.111

9.112

9.113

9.114

Shock shape comparison for 20° sphere-cone,

Ruose = L5 in (overexpansion region). . . . . . .« . oo 121
Heat transfer comparison for 20° sphere-cone, R0 = 1.5 tn. . . . .. 122
Heat transfer comparison for 20° sphere-cone,

Ruose = 1.5 in (stagnation region). . . .. ... ... .. . ... ... 122
Body pressure comparison for 20° sphere-cone, Ruose =151, . ... 123
Skin friction comparison for 20° sphere-cone, R0 = 1.9 0. . . . . . 123
Temperature profile comparison for 20° sphere-cone,

Ruose = 1.5 in (stagnation line). . . ... ... .. .......... 124
Mass fraction profile comparison for 20° sphere-cone,

Ryose = 1.5 in (stagnation line). . . . .. .. ... ... ... .. 124
Pressure profile comparison for 20° sphere-cone,

Ruose = 1500 (852 3). . . . . oo 125
Pressure profile comparison for 20° sphere-cone,

Ruose = 15 n (852 250). . . . ... ... 125
Normal velocity profile comparison for 20° sphere-cone,

Ruose =15 in (852 3). . ..o oo 127
Normal velocity profile comparison for 20° sphere-cone,

Ruose = 1500 (85 250). . . . . ..o 127
Tangential velocity profile comparison for 20° sphere-cone,

Rucse =15 (sp23). . ... oo 128
Tangential velocity profile comparison for 20° sphere-cone,

Ruvse = 1.5 in (552 250). . . . . . . o i 128
Temperature profile comparison for 20° sphere-cone,

Ruose = 1.5 (86 m3). . . o i 129
Temperature profile comparison for 20° sphere-cone,

Ruose = 1.5 in (8= 250). . . . . . ..o o 129
Temperature profile comparison for 20° sphere-cone,

Ruose = 1D in(sp®3). . .. ..o o 130
Temperature profile comparison for 20° sphere-cone,

Ruvse = 1.5 in (sp=250). . . . . . ... o 130
Mass fraction profile comparison for 20° sphere-cone,

Ruose = 1.5 a0 (85 3). . . . . o i 131
Mass fraction profile comparison for 20° sphere-cone,

Ruose = LB in (sp2250). . . . .. ..o oo 131
Mass fraction profile comparison for 20 sphere-cone,

Ropse = 1.5 in (55 3). oo oo 132
Mass fraction profile comparison for 20° sphere-cone,

Rupse = 1.5 in (85 = 250). . . . .. oo oo 132

Comparison of electron concentration profiles for 20° sphere-cone,

Rouvse = LD 30 . o 000 oo 133



X LIST OF FIGURES

9.115 Comparison of electron concentration profiles for 20° sphere-cone,
Rovse = 1500 . . o o e 133
9.116 Heat transfer calculations for 42.75° hyperboloid, R,... = 4.489 ft. . 134



LIST OF TABLES

List of Tables

5.1

9.1
9.2
9.3
9.4

H.1
H.2
H.3

Il
1.2

J.1
J.2

Species Data . . . . ... ... ..o
Run-times® for 5° cone, Rppse = 1510, . . oo . o0 o000
Run-times® for 5° cone, Rpose = 0.114in. . . . . . . ... .o 0.
Run-times® for 6° cone, Rupse = 1.5in. . . . . .. ... o000
Run-times® for 20° cone, Rppse = 1510 . . . . . . . oo 000,
Chemical Reactions . . . . . . . o v i i i it e e e e
Third Body Efficiencies Relative to Argon . . . .. ... ... .. ..
Chemical Rate Coefficients . . . . . . . . . . . . . v v v

Constants for Polynomial Curve-fits of Thermodynamic Properties
Heats of Formation . . . . . . . « . . ¢ o vt v v i v e e e

Constants for Viscosity Curve-Fits . . . ... .. ... .. ......
Constants for Frozen Thermal Conductivity Curve-Fits . . . . .. ..

xi



xii NOMENCLATURE

Nomenclature

At Damping factor (turbulence model)
A Coefficients of parabolic equation in standard form, Eq. (2.1.13);
m=20,1,2,3,4
by Shape parameter for conic body
b, Subsonic shock shape parameter
c; Mass fraction of species i; ¢; = p;/p
Cy Skin friction coefficient, defined by Eq. (3.4.1)
Cp Specific heat at constant pressure
Cs Subsonic shock shape parameter; C, = 1/ Ksq
D; m Multicomponent diffusion coefficient
D2 Binary diffusion coeflicient
h Static enthalpy
Ahk! Heat of formation of species 1
hi, ks Metrics (shape factors) for generalized orthogonal curvilinear
coordinate system
H Total enthalpy; H = h + V?/2
Js Number of points across the shock layer
T Diffusion mass flux of species i
J: Component of diffusion mass flux of species i; J; = j,%
k Thermal conductivity "
k. Reactive conductivity (due to diffusion)
kr Total conductivity; kz = k + k,
ks Backward rate coefficient
kg Forward rate coefficient
Kp Boltzmann’s constant; A'g = 1.38066 x 10™'®erg/K
{ Prandtl mixing length (turbulence model)
: , pCy, Dra
Leys Binary Lewis number; Lée;; = ————
k

. pCPfDi,m
Lem Lewis number; Le; ,,, = —
M Mach number
M, Catalytic third body for reaction r
M Molecular weight
n Normal distance from the shock to a point within the shock layer
nt Normal coordinate parameter (turbulence model)
np Shock standoff distance at current station

N, Number of catalytic third bodies



NOMENCLATURE xiii

N, Electron number density
N, Number of chemnical reactions
N, Number of reacting species
N, Number of reacting species and catalytic third bodies; Ny = N, + N,
P Pressure

LCyp
Pr Prandtl number; Pr= S
q Heat transfer rate
qc Energy flux in the normal direction due to conduction
qd Energy flux in the normal direction due to diffusion
r Radius measured from axis of symmetry
R Radius of curvature

puRnose

Re Reynolds number; Re = p
R Specific gas constant; R = Ry /M
R. Universal gas constant
S Distance measured along the shock wave
t Time
T Temperature
T, Reference temperature for enthalpy and heat of formation
u Velocity component tangent to the shock wave
v Velocity component normal to the shock wave
Vv Total velocity; V2 = u? + v?
w; Mass rate of formation of species ¢
%4 Dependent variable in parabolic equation of standard form
z; Mole fraction of species 1
X; Concentration of species ¢ (or catalytic body :— N;)
z Axial distance, measured from shock origin
Z Compressibility factor (equilibrium gas)
Zn,i Third body catalytic efficiencies relative to argon, n = N,+1, N;
Cry Stoichiometric coefficients for reactants, n = 1, N;
Brn Stoichiometric coefficients for products, n = 1, N;
v Ratio of specific heats
Vi Klebanoff’s intermittency factor (turbulence model)
Yig Streamwise transition intermittency factor (turbulent flow)
Vi Mole mass ratio of species 2
Iy Body angle
Iy Shock angle
] Value of 5,, at boundary layer edge
LA Boundary layer displacement thickness (turbulence model)
€ Reynolds number parameter; € = firef

PoouooRnoae



NOMENCLATURE

Xiv

et Ratio of eddy viscosity to dynamic viscosity; et = p,/p

et Prandtl mixing length value of ¢*, inner layer (turbulence model)
et Clauser-Klebanoff value of ¢*, outer layer (turbulence model)
n Ratio of local stream function to shock value; n = ¥/,

Nn Computational n coordinate; 7, = 1 — n/n,

K Curvature; k = 1/R

i Dynamic viscosity

¢ Computational s coordinate; £ = s

P Density

T Shear stress tensor

v Stream function

Superscripts

F

Quantity normalized by shock value at current station
Dimensional quantity

Subscripts

asr
b

e

ref

Value for standard air

Body value

Boundary layer edge

Chemical equilibrium value
Chemically frozen value

Value for species @

Denotes j-th point within shock layer along a shock normal
Denotes &-th streamwise station

Nose value

Denotes n-th reactant or product
Monatomic nitrogen

Diatomic nitrogen

Nitrous oxide

Monatomic oxygen

Diatomic oxygen

Previous iteration

Perfect gas value

Denotes r-th reaction

Reference condition (see Appendix A)
Shock value



NOMENCLATURE

Turbulent value

Wall value

Stagnation point value
Referenced to T' = 298.15 4
Freestream condition

XV






1 Introduction

Ongoing investigations into configurations such as the Aeroassist Space Transfer
Vehicle (ASTV), the National Aero-Space Plane (NASP), and the Personnel Launch
System (PLS), with their associated high altitude, high speed environments, have
sparked renewed interest in hypersonic aerodynamics [1]. Since extensive computer
run times prevent more exact approaches from being used in the preliminary de-
sign environment, there is a continued interest in developing improved engineering
methods.

For large Reynolds numbers, the shock layer consists of a large inviscid region
and a thin boundary layer near the body. Typically, an inviscid solution to this
outer region is coupled with a boundary-layer technique (e.g., Ref. [2]). For flows
about blunt-nose bodies, the shock slope changes rapidly in the streamwise direction
creating strong entropy gradients in the inviscid flow which must be accounted for
when coupling the inviscid-layer and boundary-layer solutions.

The viscous region encompasses a significant portion of the shock layer at the lower
Reynolds numbers encountered by hypersonic vehicles at high altitude. Most inviscid-
layer/boundary-layer approaches neglect the boundary-layer effect on the outer layer,
so in some cases a simple coupling technique may not give satisfactory results. Ac-
curate predictions of the flowfield properties may be obtained from solutions to the
Navier-Stokes [3], the parabolized Navier-Stokes [4, 5, 6], or the viscous shock layer
(7, 8, 9, 10] equations. The full Navier-Stokes equations are typically solved us-
ing a time-marching procedure in order to properly model their elliptic behavior (a
very costly computation). The parabolized Navier-Stokes (PNS) and viscous shock
layer (VSL) equations are derived from the steady compressible Navier-Stokes equa-
tions. Both equation sets have been parabolized in the streamwise direction so that
a solution may be advanced downstream using spatial marching techniques. These
formulations account, among other things, for the nonzero normal pressure gradients
which are neglected in a classical boundary-layer approach. Unfortunately, the com-
putational requirements of existing methods for solving these equations exceed that
which can be tolerated in preliminary parametric design studies.

For high energy flows, the assumption of perfect gas behavior is not valid since
chemical reactions occur. Using the perfect gas assumption results in much higher
post-shock temperature predictions than are realized in the flight environment. This
reduced temperature is due to energy being absorbed by endothermic chemical reac-
tions. The classical approach is to assume that these reactions occur at a fast enough
rate, relative to the time scales of the flow, that an equilibrium composition has been
achieved everywhere in the shock layer [8, 11].

Chemical reactions are a result of sufficiently high energy molecular collisions
which, in air for example, cause the dissociation of O; and N; into O and N, along
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with the production of NO. Such reactions require a finite amount of time to occur.
Thus, a finite amount of time is required for the related chemical changes to take place.
For equilibrium flows, the assumption is made that the residence time of the fluid in
the shock layer is large relative to the time scales of the chemical reactions. Hence,
the reactions occur nearly instantaneously. The assumption of equilibrium flow is
not correct for many cases of interest, particularly with reentry trajectories. This is
evident from the Catalytic Surface Experiinent [12] flight data, which illustrate the
nonequilibrium phenomenon via the rather noncatalytic nature of the Space Shuttle
surface. Thus, consideration of these nonequilibrium effects in the design process
is desirable. VSL solutions with finite-rate chemistry have been documented in a
number of references (8, 13, 14, 15, 16, 17]. Unfortunately, the restrictive central
processing unit (CPU) requirements cited earlier are intensified when nonequilibrium
effects are included. Therefore, a more approximate approach which accounts for the
effects of finite-rate chemistry would be useful.

In 1964, Maslen [18] published a simple inverse method (shock shape prescribed,
body shape to be determined) for calculating the inviscid flowfield within the shock
layer surrounding a smooth axisymmetric body. The direct problem, which is the
more straightforward application, requires iterating the shock wave shape until the
desired body shape is obtained. A closed-form expression for the local pressure in
terms of the stream function is obtained by approximating the integral of the normal
momentum equation. With the original approximations, the effects of the velocity
normal to the shock are neglected. Using this first-order expression, Grose [19, 20]
developed an inviscid, nonequilibrium method for calculating flows in Earth, Martian,
and Venusian atmospheres.

In a later effort, Maslen approximated the normal velocity’s contribution to the
pressure relation to obtain a second order approximate integral of the normal mo-
mentumn equation [21]. This expression better accounts for the recompression across
the shock layer. Zoby and Graves [22] coupled this improved relation with the itera-
tive scheme of Jackson [23] to solve the direct problem for a variety of blunt bodies.
Later this approach was extended [24, 25] to include an approximate technique for
calculating heating rates for bodies at angle of attack. Ref. [26] provides a review of
additional approximate heating methods.

In a more recent work, Grantz and DelJarnette [27, 28, 29] employ the second
order Maslen pressure relation, along with a simple linear expression for the normal
component of velocity, in an approximate VSL approach. Boundary-layer-like viscous
terms are added to the inviscid streamwise momentum and energy equations to obtain
a parabolic equation set analogous to the full VSL equations. The viscous terms
are retained across the entire shock layer, thus avoiding the problems which can be
encountered in the coupled inviscid-layer/boundary-layer approach. Furthermore,
since the shock shape is part of the solution, no initial shock shape or smoothing of
intermediate shock shapes (both required for the VSL technique) is necessary.

The method of Ref. [29] did not fully yield the anticipated reductions in CPU



requirements as compared with the full VSL equations. Based on a review of the
algorithm, scveral areas of concern in the original technique were recognized: 1) too
many iterations are required for shock shape convergence; 2) the solution is incon-
sistent near the stagnation line; 3) the grid-point spacing across the shock layer may
yield oscillations in the shock layer property profiles. Thus, it became apparent that
a different approximate VSL approach should be explored.

The first portion of this paper discusses that effort, and details the differences
between Ref. [29] and the new approach [30]. Three major differences between these
techniques are: 1) more efficient algorithms than those employed in Ref. [29] are used
to generate the shock shape; 2) the governing equations give a consistent limiting
form on the stagnation line; 3) and the spacing across the layer is related to physical
distance rather than the stream function, as in Ref. [29]. Comparisons of results and
run times are made using the current approach, the method of Ref. [29], and a full
VSL solver [9]. Comparisons with experiment are also made.

The second part of this document concerns nonequilibrium flowfield calculations.
A seven-species finite-rate chemistry model for air [15] has been incorporated in the
approximate VSL solver discussed above. Comparisons of results and run times are
made using the current approach and a full VSL solver [14]. Comparisons with Space

Shuttle flight data [31] are also made.
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2 General Analysis

Ref. [29] discusses the development of an approximate viscous shock layer tech-
nique which is solved in a shock-normal coordinate system. The approach begins with
an approximate inviscid flowfield solution based on the second-order pressure relation
of Maslen [18], including an approximate representation for the normal component of
velocity. In order to approximate a full VSL solution, boundary-layer-like terms are
added to the inviscid energy and streamwise momentum equations.

Since the goal of the present work is to develop an approximate VSL algorithm,
the current approach starts with the full VSL equations written in orthogonal curvi-
linear coordinates. First, the equations are cast in a shock-normal (rather than the
traditional body-normal) coordinate system. This step is necessary in order to fa-
cilitate the use of Maslen’s pressure relation which replaces the normal momentum
equation. Since the remaining equations are unchanged, the normal component of
velocity is found by solving the continuity equation rather than assuming a profile
as was done in Ref. [29]. If the form of the energy and streamwise momentum equa-
tions used in Ref. [29] are compared to the full VSL equations in the shock-normal
system, it can be noted that several “higher-order” terms (involving the variation of
the metrics across the shock layer) have been neglected. These higher-order terms
are retained in the present study.

The governing equations (along with their stagnation line formulations), bound-
ary conditions, and surface quantities are presented in this chapter. In addition, key
differences between the current approach and Ref. [29] are cited. The subsequent
four chapters deal with applying these equations to perfect gas, equilibrium, turbu-
lent, and nonequilibrium flows, respectively. Unless otherwise noted, the governing
equations as presented in this chapter are employed in those applications. As a final
comment, dimensionless variables (sce Appendix A) are employed throughout this
paper. Dimensional quantities are denoted by a superscript *, except in the results
chapter where this superscript is omitted.

2.1 Viscous Shock Layer Equations

The Navier-Stokes equations written in curvilinear coordinates for axisymmetric
flow are presented in Appendix B. If v and n are assumed to be order e (where €
is the Reynolds number parameter), and terms greater than order e are neglected,
the VSL equations [7] are obtained (see Appendix B for details). They are presented
below, excluding the normal momentum equation, in nondimensional form.

continuity: ) 5
5 (puha) + 2= (pvhiha) = 0 (2.1.1)
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s - momentum:

u du ' du  uvdhy 1 ap 3
P (Ill Jds + U(()n t hl an) + hl Os - (212)

Af O (Bu_wom)|,  (20h  10k)[0x_ uoh

an #\ on hy On # hyOn  hsdn ) |{On hy On
woh O\ uwip_ 0p

P h, 9s v(')'ll ¢

d [poh] poh(10h 1 0hs
’ a. | D a.. ™ A —— ——
‘ {Bn [Pran + Pron (hl On t+ ha an) (2.1.3)

(0 ) (Lou_ w0
F\"Man ™ “on hiOn  h? on

where the Reynolds number parameter is defined as

enerqgy:

2 — ”::f
Pt T,

o0 nose

¢

and Pris the Prandtl number. The dimensional reference conditions are given in

Appendix A.
At this stage, this equation set could be transformed to either a body-normal or

shock-normal system. The shock-oriented coordinate system is shown in Figure 2.1.
Metrics associated with the shock-oriented coordinate system (where s is the distance

along the shock) used in this effort are
hi =1 —nk, hs=r=r,—ncosI, (2.1.4)

where 7 is the inward normal distance from the shock and &, is the shock curvature.
By definition,
dr,
ds
Note: In addition to Egs. (2.1.1) through (2.1.3), the standard VSL
equations employ the normal momentum equation:

u Ov dv  u?oh Op

(2.1.5)

Ks =

This set of equations is solved in a body-oriented coordinate system (where
s is the distance along the body). The metrics are defined as

hy =14 nky hs=r=ry+ncosly

where n is the outward normal distance from the body and Ky is the body
curvature (which, by definition, is —dly/ds).
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Figure 2.1. I'lowfield geometry and curvilinear coordinate system.

In order to facilitate the solution of the governing equations, a transformation
to normalized coordinates is performed to yield a constant number of points across
the layer from station to station. Using the shock properties, define the following

computational variables:

n

£E=s M =1—-—
ny
_ u _
U = — p=—
U, Ps

where n, and the shock properties are functions of ¢ only. From its definition, 5, = 0
on the body and 7,, = 1 at the shock. The chain rule of differentiation gives

_‘zzgéﬁ+37’"a .(Z:%B__*_Qn_"_a_
Os 0sd¢ 0s O, on  Ondt¢ " On O,
Since
?ﬁ =1 Ol = l.dn_b
ds ds  n}ds
% =0 Pl = ___1_.
on on ny

the derivatives in this coordinate system are

0 d 1nn—1ldny 0 d 1 0
g_9_ il = 2.1.7
0s O¢ ny d€ O, an ny Oy ( )
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In the transformed coordinate system employed here, the metrics, Eq. (2.1.4), become
hi =1+ ny(n, — 1) Ry hs =71+ ny(n, — 1)cosT, (2.1.8)

Their partial derivatives in the normal direction are

ahl 1 ahl 0’13 1 8h3
— — =—cosy=——

_T-l;ann dan np ar)n

on T

The governing equations in this normalized shock-oriented coordinate system can now

(2.1.9)

be written as
continuity:

0 N — ldny, 0

52 (P-’ﬁusi‘hi&) — PslUs

dny 9 opy P59 ohihg) =
ne d£ ar,n (Pu 3) n ann (thlhs) = 0 (2‘1.10)

£ - momenlum:

~(u l Jdu  _duy W — 1 dny Bﬂ] v [6‘& ﬁahl])
R et ol Bl P

PP\l e TV T dE O o+ By o,

o1 [0 maldmop] (0] (0n @dk

hiu, |0 ny d€ On, n | Onn onn  h10n,
2 ahl 1 ahg 8& U 3h1

+”(h1 Onn +Fa3nn) (ann —75077“)} (2.1.11)
energy:

(w00 = 1du 9h] v Ok
Psb h, |0¢ ny df O, ny Oy,

_ut[Op _m—ldm Op) v Op 5
h [3{ ny d€ O, t ny O - (2.1.12)

[ 8 [puoh] w dh 10k | 13hs , (0u @0k’
Vo | Pron, |t Prom, \kiom, T haon.) T F \ G, hioma
UD Mn rOnn T OMn 107 307, 67711 hl 8nn
Equations Eqs. (2.1.11) and (2.1.12) can be cast in the following standard form
for parabolic partial differential equations:

W ow ow
Ao +A1 +A2W,+A3+A4—— - 0 (2113)
on? Oy

73
where W represents the dependent variables u and &, respectively. The values for the

coeflicients are listed below:
£ - momentum:
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A _ é 0”+ i%.{.i% o £+u3ﬁnn—ldnb
e ng |9, a hy Oy, = haOnm, psp ny, hy ny df

A, = 6_2 1 0hi\ [ Op 4 _1_%+__1_6/13 + psp (_du, v Ohy
2 ng \ k10, ) |00 K hiOn,  h3On, hy “ d¢  nyon,
1 1 0p m—10dp [ 1 dn
A= H as} T o \w (2114
Ay = ,«w.E
hl
energy: )
L .
Ao = n? Pr
e[ o /u g [18h, 1 0hy fv  utin, —1dn,
h=-r [ann (E)+E(H51}Z+Ea_m TPt T e dE
Ar=0 (2.1.15)
gy LB [0 _ma—ldm Op) v Op  , uif0n @Ok
3 hy | 0¢ ny df On,|  nyOnn ”nf O hy Oy
i
A4 = PslUs h1

2.2 Maslen’s Pressure Equation

As mentioned in the previous section, the normal momentum equation is solved as
part of the standard VSL solution. In the approximate VSL method, Maslen’s second-
order pressure equation is used in lieu of numerically integrating the n-momentum
equation. The derivation of this approximate closed-form expression is presented in
Appendix C. The result is repeated here:

_ KsTsU, vesinl’, KeTs 2
pEm) = po+ 22 (g - 1) - 2 [1 + F’] (i — 1) (2.2.1)
h
where ) E
=y

s

and VU is the stream function.

Maslen’s pressure expression offers an attractive alternative to numerically in-
tegrating the normal momentum equation to solve for p, since it expresses p as a
function of the shock properties at the current station and n only. This relation is
very simple as compared with the normal momentum equation which it supplants.
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The variable  should not be confused with the transformation variable n, defined pre-
viously. The relationship between these distinet quantities is derived in Appendix D,
and is repeated below:

Nn n
V,n = n? [p,uf/ pu(n, —1) dnn] + ny [p,u,r, A ﬁﬁdnn] (2.2.2)
0

Maslen’s relation fosters analytic relations for the partial derivatives of pressure
(which appear in the governing equations) as well. Differentiating Eq. (2.2.1) with
respect to 7 gives

R I
Differentiating Eq. (2.2.1) with respect to £ gives
%g ,, = %’éﬁ + i ; ! {u,h?_., sinly + u,r,%}i + K2, sinr,}
e g e (- 25)]
+ (1 + c'(;asl: ) [sin Fs% — VyKg COS F,] } (2.2.4)

As noted, Eq. (2.2.4) is the partial derivative of p along lines of constant n. The
following expression relates this quantity to the partial derivative of p along lines of

constant 7, (see Appendix C):

dp| _ Op|  Ondp  nn—1dny Op
o, 8{ s Oy + ny dfé On, (225)
where 5 o ahe §
O _ pspusithy On
o = U, iy . (2.2.6)
and 5 a )
nf -1 Us _ KsTs
0¢ " 2 cosT, [1 cos F,] (2:2.7)
Further, 3 .
p _ pspustihsny dp
07711 - q’s 377 (2.28)

2.3 Wall Boundary Conditions

The no-slip condition is applied at the wall so that.
Uy = Vyp =0
In addition, the wall temperature (T,), which can vary along the wall, must be

specified.
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2.4 Stagnation Line

The stagnation line is a singularity in the standard VSL equations. Typically, this
singularity is handled by representing the dependent variables on the stagnation line
with a truncated power series of £. Substituting these expressions into the governing
equations yields a set of ordinary differential equations for the stagnation line. How-
ever, since truncated expansions were used in their formulation, these stagnation line
equations are not strictly consistent with the general governing equations.

In the shock-oriented system, an explicit limiting form of the governing equations
as £ — 0 can be calculated, since Maslen’s relation provides analytic derivatives
of the pressure. Thus, a set of ordinary differential equations which is consistent
with the general governing equations can be obtained. The form of the streamwise
momentum equation used in Ref. [29] contains a group of terms which vanish on
the stagnation line provided the normal momentum equation is satisfied. However,
Maslen’s expression does not satisfy the normal momentum equation, so a correction
term must be carried along throughout the shock layer in order to force the solution to
smoothly approach its stagnation value. Despite these efforts, the stagnation solution
was not consistent with the remainder of the layer. In the current research, the
streamwise momentum equation does not contain this group of terms, so no correction
terms are required. Results of Chapter 9 show that with the current approach, the
problem with the limiting form of the equations as they near the stagnation line is
successfully addressed. The governing equations for the stagnation line are presented

below.

2.4.1 Viscous Shock Layer Equations

The limiting values of the geometric quantities are given in Appendix E. First
consider the continuity equation. Without loss of generality, Eq. (2.1.10) can be
rewritten as

0 dny, 0 . 0 ,_
b (psusnppihsy) — p,us—%% [(mn — 1) puihs] — p,577—n (pvhih3) =0 (2.4.1)

On the stagnation line,

) 0 - sy __, O dny, O .
lim {u’d—f (psmepiihy) + p:b/mhla—ﬁ (usrs) — psu,-d?ba—% (7 — 1) PUhl]}
0 /.
- Ps()% (pvhf) =0 (2.4.2)
so that

I usgdry  du, 0 .\ _
P'Uhlél_l}d{,os"b [1‘_3 @ + T ]} ~ pso—az (pvhl) =0 (2.4.3)
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Further applying these limits to Egs. (2.1.11) and (2.1.12) yields the following set

of equations which are valid along the stagnation line

continuity: 5
2K 49 T2hg Pag PUR1 — /’805‘6— (ﬁvhf) =0 (2.4.4)
¢ - momentum:
p(Ldus v [0u  aOh]) L, [110p 1= ldm Op
PP\ 1y dE ~ iy |On | h10m, hy 60 | u, |06 ny  dE Omn
€? 0 ou 4 Ohy p Ohy [ Ou i Ohy
T ng, {Bnn [” (8nn T Bnn)] 3% 0n. \am. ~ u om (24.5)
enerqgy. )
vah ap__i d [ p Ok _2_£6h18h (2.46)
~ Pof Onn 61]" gy LOna [ Pron.] ki Pron, on, o
It follows that Egs. (2.1.14) and (2.1.15) become
£ - momentum:
A= -5
0= 2
e [ du p Ohy _
Ar= - [6% * Q—f; 0171;} p,opn—bo
e (10h\]|0du p Ohy psof [_du, v Ohy
A, = il 2 b L —_— 2.4.
’ (hl ann) [an,, o om T \Y T g om (2.47)
1 1 dp 7 —10p . 1 dn,
Aa = hy [P—I'O{u, 0{} ny, O P—r»% u, df
A4 - 0
energy: ,
- _c #
Ao = ny, Pr
e 1o (p 2 p Oy _
A = ( ) — Vs
! leo [317,, Pr) "y Pr(?nn} PaoP?
Ay =0 (2.4.8)
_,9p
Aa = Uann
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2.4.2 Maslen’s Pressure Equation

On the stagnation line, equation Eq. (2.2.1) reduces to
Vs / 5
P(7) = pog = (n*-1) (2.4.9)

and Eq. (2.2.2) becomes

1 n _ n L
51 = nboz [psam,uzfo pu(n, —1) dnn] + ny, [p,ofc,o A pua'nn] (2.4.10)
From Eq. (2.2.3)
7]
9P _ ~vg,1) (2.4.11)

Further, Eq. (2.2.4) becomes

: 1 0 : 1 dp
hm{u, 0? } %lm{u, d€}+fc,0( -1) (2.4.12)

nt—1 1 lim 1 dk, +r lim d &S I, —rx,
- Vs — Ko lim § ———22
4 O [ gy €=0 | u, d€ 0 e—fo ud

+ o limd L9,
= [e20 u, df s

Utilizing results from Appendix E, this can be written as

1 dp . 1 dp, .
m{u, d€ } %T&{,T,E} + Kag (1 — 1) (2.4.13)
7’ - 'l v.’o 1 dﬂa . i-(—j—v_a _
2 [ i h"O %-;0 { us dé' + gLn(} us dé, v"OK"O
where the terms
1 dp, . [ 1 du, (1 dx,
lim { — % 1
P“n‘}{“’ "f} f%{ua dé} %‘E‘é{u, de}

are defined elsewhere.
Continuing, from Eq. (2.2.5) the limiting form of the streamwise pressure gradient

dp .. 1 dp n— 1 dp 1 dny
n}+3_n?—r'rtl){u,83}+ T, 317,;%—'0{11, df}

(2.4.14)

1s
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where

} (2.4.15)

1 9y 1 On
%T& {;—:5;} = 2p,0puh1 llrn { 3{

Taking the limit of the streamwise derivative of n gives

1 On Vag cosT'y, — ryk,
él—r'r(ll{r, 3{ } (I—-n)=° 2 %LO{ ulr, }

so that (see Appendix E)

) 1 On
lim{ — —
-0 | ry 0|,

UL 1 dk,
} = sy %1_{1;1) T (2.4.16)

Further, the derivative of p with respect to n, 1s

Jp ., Op
o ZP’O""Onbopuhlb—n (2.4.17)
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3 Perfect Gas Analysis

The governing equations given in Chapter 2 must be supplemented by the equa-
tion of state. In addition, the thermodynamic and transport properties are required
for closure of the equations set. This chapter supplies those quantities for perfect gas
flows. In addition, the perfect gas shock jump conditions are given in Section 3.3.
Perfect gas results generated using these governing equations are presented in Chap-
ter 9.

3.1 State Equation

In its general form, the equation of state is
p* — P* (p*’ h*)

For perfect gas flows, X
pr=pRIT" (3.1.1)

where for standard air (N, and O, only), R" = R?,.. Written in nondimensional form
(see Appendix A),

. —1
p=pR,,.T = /)j—;—T (3.1.2)

where v is the ratio of specific heats.

3.2 Thermodynamic and Transport Properties

For perfect gas flows, the specific heat has a constant value:

x __ ’77%:#
Gy =17 (3.2.1)

where in nondimensional form (see Appendix A) this becomes

_ 7Rair .

Cy pomy (3.2.2)
As a result, the definition of enthalpy for perfect gas flows is simply
h=C)r* ‘ (3.2.3)

so that nondimensionally

h=C,T =T (3.2.4)
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Sutherland’s law [32] is employed to calculate the viscosity:

T*1.5
=227 x 1078 s ————— l - 2.
7 T 107 o8 [stug/ft-s] (3.2.5)
where T* is in degrees R. The Prandtl number (Pr) is the ratio of viscous diffusivity

to thermal diffusivity:
#Cy

k
For a perfect gas, this quantity is constant throughout the shock layer, and in this
investigation is assumed to be Pr = .72. With C,, g, and Pr as defined above, the
thermal conductivity, &, can be determined from Eq. (3.2.6).

Pr= (3.2.6)

3.3 Shock Properties

The shock jump conditions are given by the Rankine-Hugoniot relations. For
the special case of perfect gas flow, these expressions take the following form (see
Appendix F for details):

_ 2sin’ I, 7—-1

Ps = 7+1 —7(7+1)M§o (331)
(v 1) M2 sin®T,

Pr=o% (y— 1) M2 sin® T, (3:3.2)

T, = %T}T (3.3.3)

vy = S“;FS (3.3.4)

The streamwise derivative of u, appears in the {-momentum equation. Further,
the derivatives of p, and v, with respect to ¢ are required for Maslen’s analytic
expression for dp,/dé. These gradients are given by (see Appendix F)

du,

& = Kkysin T, (3.3.5)
dv | 1
s _ k. cosT, - 3.
d¢ s €08 (v +1) M2 sin®T,  p, (3:36)
dp, 1 .
-2 = —————k,;sin,cos T, 3.3.7
¢  (y+1) (3:31)

On the stagnation line, the shock jump conditions take the form of the normal

shock relations:
-2 -l (3.3.8)
T+l () ML o

Psg
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(y+1) M2
Po = Y (- ) ME
5 TSO:I’SOL
Pso ¥ — 1
1
Psq

In addition, the stagnatiou line limiting forms of the shock gradients are

Vs, =

du, 4
&

I | dv, | 1
1n -_— = Ky —_——— — —
£ | u, dE oy + ) ME o
. 1 dp 4K,
lim{ —P2 L T
{L"&{ug df} (y+1)

3.4 Surface Quantities

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

In the design environment, estimates of the lift, drag, and heating rates are de-
sired. Thus, a design tool should provide values for body pressure, skin friction, and
heat transfer rate. In this effort, the body pressure is supplied by Maslen’s relation.
Relations for the skin friction and heating rates are given below. Gradients along the

shock-normal lines are used in liecu of body-normal values.
The skin friction cocflicient is defined as

9
] ~ *

C ;= > Tw
Poo V!

where the shear stress at the wall is

R N du*
™ =y |-
w = Hu an*

In terms of the nondimensional variables (see Appendix A),

Vx w 0
T,: = (Il:ch*oo ) l_t—— _u—

nose M ()7]11

w

w

so that
2 Jou

€
Cp=2—pu, —
! nbﬂ M

w

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)
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The heat transfer rate (see Appendix G) to the body is

oT~
oy
' W AOp*
w
so that in nondimensional form,
aT 9T
qu = _€2kw = 'C—kw a_
on W T oy, v
Since
dh = C,dT
this may be written as
B Ak, Oh
- Ny Cp E)nn w
or ) ,
¢, Oh

T Pry O,

w
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(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)
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4 Equilibrium Analysis

The governing cquations as presented in Chapter 2 are readily applicable to equi-
librium flowfields. In fact, the form of the continuity equation and Maslen’s equation
remains unchanged for all flow regimes considered in this paper. The state equation,
the thermodynamic and transport properties, and shock jump conditions for equilib-
rium flows are provided in this chapter. Chapter 9 presents equilibrium results based
on these governing equations.

4.1 State Equation

For a nonreacting gas, R is constant since M is constant. However, when
chemical reactions become important, M varies within the fluid, and using R = Raiyr
in Eq. (3.1.2) is no longer valid. There are a variety of approaches for handling
equilibrium flows [33, 34] which account for the variation of R . In this study,
Eq. (3.1.2) is modified to account for the effects of chemical reactions:

p=pZRaT (4.1.1)

The term Z is the compressibility factor:
Mair
M

This factor is evaluated through a table look-up procedure of values calculated using
Hansen’s expressions [35].

’
;=

4.2 Thermodynamic and Transport Properties

For equilibrium flows, both the Prandtl number and specific heat of the fluid vary
within the shock layer. In addition, Sutherland’s viscosity relation is no longer valid.
In past efforts (see [36], for exanple), various techniques [37, 34, 38, 39, 40] have been
employed to define the thermodynamic and transport properties of equilibrium flows.
The energy equation as written in Chapter 2 requires that the equilibrium Prandtl
number be used (see Appendix G). Hansen’s paper [35] includes expressions for &, T,
#, and Preg. This is the model used to define thermodynamic and transport properties
for the solutions presented in this paper. As in the calculation of Z, these relations
are used to generate a table of data which spans a large range of values for p, A,
and T. These tabulated values are then interpolated as needed during the numerical
solution of the governing cquations. At the body surface (where T, is known), the
table look-up procedure takes the form
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hy = hy(Puw, Tw) Zy = Zuw(puw, Tw)
to = fu(Pw, Tw) Preg,, = Preg, (Puw, Tw)
Elsewhere, since h is known, the implementation is of the form
T =T(p,h) Z =Z(p,h)
u=p(p,h) Preg = Preg(p, h)

4.3 Shock Properties

With perfect gas flows, closed-form relations can be used to determine the values
of the jump conditions. However, no such simple expressions can be formulated for
chemically reacting flows. Therefore, the following set of equations must be solved in
an iterative fashion (see Appendix I for details):

sin I
v, = 4.3.1
o (4.3.1)
, 1
Ps = Poo + SIN° I, (1 — p— (432)
sin? I, 1
hy = hoo + S‘"Q (1 - ;5) (4.3.3)
Ty = T'(ps, hs) Zy = Zy(ps, hs) (4.3.4)
Ps
g = b 4.3.5
P R, (4:3.8)

The iterative procedure is as follows:

1) Begin by setting p, = 10.

2) Use Eq. (4.3.2) to calculate p;.

3) Find h, from Eq. (4.3.3).

4) For these values of p, and &y, find Ty and Z, from Hansen’s model.

5) Determine a new value of p, from Eq. (4.3.5).

6) Steps (2) through (5) are repeated until the relative error between
the new and old values for p, is less than the prescribed tolerance.

7) After convergence, compute v, from Eq. {4.3.1).

The derivatives of u,, py, and v, with respect to € are also required. The definition
of the streamwise derivative of u, as given in Section 3.3 is valid for equilibrium flows.
Finding the gradients of p, and v,, however, presents a challenge. Fortunately, these
gradients only appear in Maslen’s streaimwise pressurc gradient. As will be discussed
later, a simple two-point backward-difference representation of this term is employed
in the marching region, so analytic forms of these derivatives are only required in the
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nose region. The following algorithm is employed. The shock values for p and v in
the nose region are fit in a least-squares sense with the following conic

S
A+ BE(S — So) +CS(S—=Sp)+1—=— =0 (4.3.6)

So

where S is either p, or v,. This equation is constrained to pass through the stagnation
value with a slope of zero. The shock gradients are supplied by the derivative of this
expression:

dS 2AE + B(5 — So)

= : :

% C5— S+ Bt - o

0

On the stagnation line, the equilibrium shock jump conditions of Section 4.3 sim-

(4.3.7)

plify to become

1
Ve = 4.3.8
0= (4.3.8)
1
Psg = Poo + 1 — (439)
/)30
1 I
hay = hoo + 5 |1 = — (4.3.10)
2 P
Ty, = .'[',,U(p,,o,hso) Loy = Z’o(pso’hso) (4.3.11)
Poy = (4.3.12)

= S lfa
ZsORan‘[sO

Equations Eqs. (4.3.8) through (4.3.12) are solved using the iterative procedure of
Section 4.3. The stagnation line value of the streamwise derivative of u, is given in
Section 3.3. The quantities

I 1 dp, . | dv,
¢0 | w, df £50 | u, df

are required for Eq. (2.4.13). Recall that the gradients are given by

dS 246+ B(S - 5S)

€ C(25-5)+ Bt~ gi
20

(4.3.13)

where S is either p, or v,. Also note that

liln{jl—d—‘s-}: : lim{—_l—-@} (4.3.14)
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Since ry — £ and S — Sy as £ — 0, the above equation gives

T T | T
CSi-  |CS-= Ag

~0 0

lim
§{—0

{1d5’}_ 24 B |AS

I's

Further, since AS/A¢ — dS/df — 0 as £ — 0,

I 1dS| 2A
61—1'1(11 re df | C 1

§
0 S
so that
i { 1 ds} 2AC,
m{——g = ——————
£—0 | u, d€ e
CSo —So

4.4 Surface Quantities

21

(4.3.15)

(4.3.16)

(4.3.17)

The relations given in Section 3.4 for perfect gas flows can be employed for equi-

librium flows as well, provided Pr, is used in Eq. (3.4.8).
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5 Nonequilibrium Analysis

In nonequilibrium flows, the characteristic time scales of the chemical reactions
are of the same order as the time scales of the mean flow. Thus, species conservation
equations must be solved in order to determine the local composition of the fluid. In
addition, it is advantagceous to rewrite the energy equation in terms of T'. The rate of
production of each species appears in the energy equation when it is written in this
form. These changes to the governing equations presented in Chapter 2 are detailed
in the sections that follow. Further, discussions of the thermodynamic and transport
properties, state equation, boundary conditions, and surface quantities are presented

in this chapter.

5.1 Viscous Shock Layer Equations

The continuity and streamwise momentum equations and Maslen’s expression,
presented in Chapter 2, are still valid for these flows. However, it is advantageous
to recast the energy equation in terms of 7' (see Appendix G for details), since the
chemical rate equations are functions of 7":

o (BOT, O wip on_
P hy Os on

hy Os an
P . . : 2
,] 0 |, 0T oI {1 Ohy 1 Ohg Ju u dhy
k= +thk— |+ —— ———— 1.
‘ {an [kan] + on \ h, On + hsy On T on h; On (5.1.1)
o N,
—(22\:7, p; or Z/l,"u'),'
' a =1
‘The subscript i is the species index for the seven-species air model used here. Table 5.1

provides the key for this indexing, along with the species molecular weights and perfect

gas values of specific heat.
Each species present in the mixture is governed by a species conservation equation

(see Appendix G):

u Oc; Jc; . INE 1 Ohy 1 Ohs
— = w; —— 1.2
”(h,as“L an) i {al ‘Z(hl 3n+h33n>} (5-1.2)
where the binary diffusion mass flux is
k de;
Ji= o Lﬁlzan (5.1.3)

!
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Table 5.1. Spccies Data

¢ | Species M; C;,:.pg

[gin/gm-mole] | [cal/gm-mole-K]
| S 28 7.00
2| O, 32 7.00
3| N 14 4.97
41 O 16 5.44
5| NO 30 7.00
6| NO* 30 7.00
T e 0.0005486

and Le;, is the binary Lewis number. Binary diffusion assumes that the fluid con-
sists primarily of heavy particles diffusing to light particles, and vice versa. Previous
investigations [8, 13] have used this approach successfully (assuming Le;; = 1.4 ev-
erywhere, for example). In keeping with the approximate nature of this approach, a
constant Lewis number of 1.4 is used here. The species mass fractions are

P
¢ = — 5.1.4
p (5.1.4)

and by definition satisfy the relation

N,
S =1 (5.1.5)
=1

In the normalized shock-oriented coordinate system (see Chapter 2), Egs. (5.1.1)
and (5.1.2) can be written as
energy:

o (8 [07 mtdnoT) 0T
PsPry hy | O ny d€ On, ny Ony,

_ usll é;z_ nn—]dﬂap v Op
by {oe Py de on,

6._2 d kaT +k?£ _1__8h1+l?ll_3 b du a0 2
né | on. | O Onn \h1 On 3 Ony o o, hi0n,

2 N or Y
+ =3 TiCpim— — D hith; (5.1.6)
nb,'=1 dnn

O,

1=1
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species conservation:

R (us-d [Uc,- N — 1dny (‘)c,] v dc,-) _

PP\ 0 |96~ “mp de Om, s dn)

2 70 : :
w.—+,—€.—{i [J.--d—c'—] + 5.9 (l Ohy | 1 ah3)} (5.1.7)

ng | O |7 0N O \h1 90, " hs O,
with .
k Ley de; T Oc
Ji = C,,f ny M. ny Iy, (5.1.8)
where L
~ ° L
Ji = z;Lelz = 7%_146‘12 (5.1.9)

In preparation for numerically integrating the governing equations, the production
terms are written in terms of 7’ and ¢; in the energy and species conservation equation,
respectively. These representations are given in the next section, along with the
resulting governing equations.

5.2 Species Rates of Production

In addition to their presence in the species conservation equations, the species
rates of production (w;) appear in the energy cquation when it is written in the
above form. These source terms are functions of both 7' and ¢; (see Appendix H).
As such, they should be expressed in terms of ¢; for the species continuity equations,
and in terms of T' for the energy equation [58, 59].

For the species continuity equation, the production term can be linearized [58, 59]
to yield

=t = — e (5.2.1)

p

where N
@l = 2"!; v By, + 15, Ry ] (5.2.2)

N [THRE, + LR
w: — /“itl Z [ L,rith,r 1,7 f,r] (523)
wrff r=1 G
P
+ _ ) Bir—ai, Jfor B, —a;, >0

Fi,r - { 0 ) for /ji,r — Qi S 0 (5.2.4)

Y—
[i,r

, for e, — 6, <0

&, =B, ,fora,, —pi,>0
{ 0 (5.2.5)
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and the remaining quantities are given in Appendix H. The subscript » denotes
evaluation at the previous iteration. The quantities ¢;, and f; , are the stoichiometric
coeflicients for reactants and products, respectively.

For the energy equation, the production term can be written as a truncated Tay-

lor’s series [58, 59]:
L9 d w,
p aT

where again the subscript » denotcs evaluation at the previous iteration. Thus, the
production term in the energy equation can be expressed as

'Li),‘ w,

[1‘ T,) | (5.2.6)

N,
Zhiu'),- = wy; + Twy; (5.2.7)
=1
where
. L, W
Wy, = { [Zh TZh, 5T ( )]} (5.2.8)
and
0 [y
Wy, = {th, T (w )}p (5.2.9)
Further,

] (w) M Y
- = = ﬂi,r — Qi 5210
57 T2 ) (5.2.10)

D;, Dy,
X [(Bf,r 7{,' ) Rf,r - (Bb,r + Tb: - ﬂr) Rb,r]

Now make use of these expressions in the energy and species continuity equations.
For clarity, the entire set of governing cquations for nonequilibrium flows is repeated
below.
continuity:

o, _ —ldn, 9 ps 0 _
0—§ (pspustihs) — p,u, - df . (piths) — s B (pvhih3) =0 (5.2.11)

£ - momentum:

;_ @+“@ﬁ_u”n_l.d_n_baﬂ _Y _ai_*__u—_._a_hl
PP hy s ¢ “ dé * ny dE Ona| me |[Onn b1 Onn

1 @_Wrz—léﬂfz}_’_ _iz 0 8ﬂ_£0h1
+h1u, o€ ny df On,| ni |0 # Onn  hi10n,

20h, 1 0hy Jdu u Jhy
R el - 5.2.12
T (h, O + hgann) (aﬂn hy aﬂn)} : ( :
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enerqy:

50 M(‘)_’]_’_n"-lﬂarf v 0T
PsP ey hy | O ny d€ On, B ny Onn

Ui 01)_77,,—1117&@ v dp
hy 10¢ ny, df On, ny On,

e | o [ or Al (1 Ok, 1 Ohy di @ Ohy\?
= k k - ~ u? _u
n? {61],, [ 81}n] t any, (h1 on,, + h a"']n) + ugp (6777; Ry 7
€2 N, oT ' -
+ Eg‘j‘c”‘% — iy, — Ty, (5.2.13)

species conservation:
ATRY _(9& N — 1 dny dc; v JOc; _
Psp hl é){ ny df 07),, ny aﬂn -

2 .
0. t_ 0 - aC,' 3 8(3,‘ i 6h1 _1_ ah3
plu? - el] + 2 {61},, [‘7' 07,,1J g ( b om | ks o, (5:2.14)

Maslen’s equation:

Kol gtly vysin b Kol 9
p=pst—5 (n—1) - 1 [1 + COSFJ (n*-1) (5.2.15)
with
2 n n
Vo = [puat [ it (- 1) din) + 10 [, [ pisd| (5.2.16)
0 0

Egs. (5.2.12), (5.2.13) and (5.2.14) are cast in the standard form for parabolic
partial differential equations to yield the following coefficients (see Appendix G):

£ - momentum:

(2

Ao = —*-s[l
n

\ et [ ou N 1 Ohy + 1 Ohg o + UsU gy, — 1 dny
= ——]— {| — — —_——_— — Ps — _—
A ng | dn. / hy O, h3 O, PP ne hy ny dE
e (1 om\[on 1 0hy 1 Ohs f_du, v Ohy
Ar = -"'—62 (.’;Bnn) [ann Ma (hl a"]n + hs Oy, Tosp d¢ B n 5%

— ! 1 ap n — 1@_ .L_dib_
A3 - hl [{us a{} ny ann {us d{ }:I (5-2.17)

Ay = psus'p_u
hl
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energy:
2
Au - —;b,.,—k'
e [ ok 1 Ohy 1 Ohsg N,
Al=——l—+k| —— + — iCo.
! n? [Bnﬂ + (h. O + hs O, + nb;‘j Ch,
v wity, —1dny
~PsP [ 724 + hy mny d } C”f

Ay = iy, (5.2.18)

w, il '6_30_1),1—]111;& Op iap
hy [0 n, df On, np Oy

2u§(aa ﬁ0h1)2 _
—CHK + wy;

1 6_7711 a h_lann
Ay = /)susﬂ
hl

species conservation:

(2 ~
AO = 2\7i
n;

210 ;o\ {10k 10k Jinn—1d
A1=-€—2[ (.7.~)+J,-( Ly 3>}+p,ﬁ[i+“"” Sl
b

ng | O, hyOn. ' ha Onn ny, hy ny dE
Ay = —pypw} (5.2.19)
A3 = p,p_w?
pi
Ay = — sUsT
4 psu hy

All N, species conservation equations neced not be integrated to determine the
concentrations of each species. It is possible to use only N,—1 of the species continuity
equations, in conjunction with Eq. (5.1.5). Ref. [16] goes one step further by locally
conserving the elemental composition of the fluid. For air, this gives two relations, if
binary diffusion assumed: '

cN, +on + MNNO (cno + Chot) = Chpoy (5.2.20)
co, +co+ MNOO (cno + CNot) = Copey (5.2.21)

so that only N, — 2 species continuity equations must be integrated. Numerically
integrating fewer equations should reduce CPU requirements, so this latter approach
is employed here.
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5.3 State Equation

As mentioned in Chapter 4, R is variable for reacting flows since M of the
nixture is not constant. When finite-rate chemical reactions are considered, the
flowfield can be modeled as a mixture of thermally perfect gases. For such a mixture,

the equation of state is
Ru I Al

P=P7y (5.3.1)
where -
Ru= -
C’Poo
The mixture molecular weight can be written as
1
M=+ o (5.3.2)
M,

5.4 Thermodynamic and Transport Properties

5.4.1 Thermodynamic Properties

The thermodynamic properties are required for each species that is present in the
fluid. Expressions from Ref. [60] are used to define Cp; and h; for the temperature
range of 300A° < T* < 30000K (see Appendix I). The thermodynamic properties for
the gas mixture are determined in terms of the individual species properties through

the relations

N,
h=> cih; (5.4.1)

=1

and N
Co, = >y (5.4.2)

1=1

5.4.2 Transport Properties

Ref. [60] also supplies the species transport properties (u; and k;) with curve fits
for the temperature range of 1000K < T* < 30000K (see Appendix J). While the
thermodynamic properties of the fluid are linear combinations of the individual species
thermodynamic properties, the transport properties are defined by more complicated
expressions. These expressions are referred to as mizing laws. Ref. [61] presents a
thorough review of mixing laws, and points out several approximate formulations of
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them. In the present research, two of these simplified relations are employed. The
method of Armaly and Sutton [62] is used to define the mixture viscosity:

N.! ‘,1:2
=) - 5.4.
1 ,;m (5.4.3)
where N
x? L xir; MM, 5 M;
Hi=—L+) 2~ [ + J] 5.4.4
Hi Z:; Hij (-/M +M ) Aij M, ( )
J#t
and T
32W’
Hij & (5.4.5)

M o mER T
N
The mole fraction for species ¢ is

T = (:iX/tM—i | (5.4.6)

Further, A;; = 1.25 and

B = 0.78 , for interactions of atoms or molecules with each other (5.4.7)
' 71 0.15 , for interactions of atoms or molecules with ions o

For the mixture conductivity, the method of Mason and Saxena [63] is employed:

N, ,\':

k=Y (5.4.8)
=1 N,
.
| + E;@U:C—Z
J#
where \
25
s )
= - (5.4.9)

Ref. [61] shows that values from the curve fits approach Sutherland‘s values as
T* — 1000K. Thus, for temperatures less than 1000K , Sutherland’s viscosity law

x1.5
p* = 1.4584 x 10~5m [gm/cm-s] (5410)
and Sutherland’s law for thermal conductivity [32]
R T*I.S )
= 5. YT l/em-s-K 4.11
k* = 5.9776 x 10 T 11944 [cal/em-s-K] (5.4.11)

may be used to define the mixture viscosity and conductivity, respectively.
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5.5 Boundary Conditions

5.5.1 Wall Values

As in the case of perfect gas and equilibrium flows, the no-slip condition is applied
at the wall so that
Uy, = v, =0
Further, the wall temperature, T,,(€), must be specified. Additional boundary con-
ditions must be supplied for the species continuity equations. For a noncatalytic
surface, the boundary condition is

0(;,‘

| =" (5.5.1)

3

If equilibrium catalytic wall conditious are specified, then
ciw = cieq(flvw) (5.5.2)

In this research, the wall temperature is low enough to produce freestream values for

these concentrations:
€0,, = 0.23456 CN,,, = 0.76544 (5.5.3)

Cow = ch = (:N()w = CNO+w = ("e'w = 0

5.5.2 Shock Properties

For nonequilibrium calculations, flow through the shock wave is assumed to be
chemically frozen. The governing equations for the shock jump conditions are (see
Appendix F for details):

sinl’,

vy = - 5.5.4
o (5.5.4)

. 21 1
Ps =Poo +8in° I, [ 1 — o (5.5.5)

sin? I, 1
hy = (',‘()2<x)}l()2 (Ts) + N, o hN2 (Ts) (557)
Cra = 010y Crg, (1) + ity Cop, (1)) (5.5.8)

Ps
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where the species enthalpies of Eq. (5.5.7), as well as the species specific heats in
Bq. (5.5.8), are obtained from the curve fits of Ref. [60].

By substituting Eq. (5.5.9) into Eq. (5.5.5), the following quadratic for p, is ob-
tained (with 7 as the only unknown):

Ru o .
P2 = (poo +sin ) ps + - Jesin' Ty =0 (5.5.10)
Substitute Eq. (5.5.9) into Eq. (5.5.6) to obtain
in” T, R. L]’
by = ho + sln2 (1 — [M : p— (5.5.11)

Differentiating Eq. (5.5.10) with respect to 7T, gives

u .
sin® T,

Op, .
2 Masr (5.5.12)

oT, 2p, — (pm + sin® F,)

Differentiating Eq. (5.5.11) with respect to 7, gives

oh, . Re \!T, [1 T, 0p,
2 = sl Rl 5.
o7, o (Ma;) Ps [pa p? OT, (5:5.13)

Combine Egs. (5.5.12) and (5.5.13), and rearrange to get

. Ru sin? T,
Oh, _ (5.5.14
0T, psps —sin’T, -5.14)

As with equilibrium flows, these equations must be solved in an iterative fashion.
‘To speed convergence, Newton’s method is employed:

1T, =T,, + AT, (5.5.15)
where F
AT, = ~ (5.5.16)

The function F is defined to be the difference in enthalpy values given by Egs. (5.5.6)
and (5.5.7), respectively:

F(T,) = h’Eq. (5.5.6) hsEq. (5.5.7) (5.5.17)
so that
hy
F(T,) = -?51’— ~C,, (5.5.18)

The solution procedure is as follows:
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1) Begin with 7, from the previous shock evaluatian,

2) Use Eq. (5.5.10) to calculate p,.

3) Determine a new value of p, from Eq. (5.5.9).

4) Find h, from Eq. (5.5.6).

5) Evaluate h, from Eq. (5.5.7) and (', from Eq. (5.5.8).

6) Calculate ¥ and F’ from Egs. (5.5.17) and (5.5.18), respectively,
to determine AT, from Eq. (5.5.16).

7) I |AT,| is greater than the prescribed tolerance, update T, using
Eq. (5.5.15) and return to (2).

8) After convergence, compute v, from Fq. (5.5.4).

The derivative of u, is given in Section 3.3. The derivatives of ps and v, with
respect to £ are (sce Appendix F)

N,COSF,{(‘Us_pSSlnFS)-—2[%-}. wl }(vs—sinrs)}
dps — Cps vs CPJ (5 5 19)
d{ Mair _ 5 1 h
R. v} Cps
and d 1 1 1d
d? = 2k cos [, (;s- — 1) — —j [r;s cos 'y + ;; dIZ’S} (5.5.20)

respectively.

5.6 Stagnation Line

As mentioned in Chapter 2, a limiting form of the governing equations can be
obtained for use on the stagnation line. A limiting form for the energy equation
cast in 7', as well as the species conservation cquations, may be found in the same
manner. These ordinary differential equations are given in Section 5.6.1. In addition,
the stagnation line jump conditions and their gradients are presented in Section 5.6.2.

5.6.1 Viscous Shock Layer Equations

continuity: )
( .
2K59T, s PRy — psOEf (pvhf) =0 (5.6.1)

£ - momentum:

fatdu, v 6ﬁ+ﬂ6h, +ilim 1 Q}_’_’ln—lﬂ@
PsuP _/Z d¢ —"50 O hy O, hy ¢=o | u, |0€ ny d€ On,
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_ €2 J ou __i_l‘ahl +3ﬁ_g_h_1 du
- T My, a e hy Ong hy Onn \ Oy
energy: o7 5
PSOP( Pf a + Ua—np_ =
€2 17, oT aT 2 dhy 2 oT
g, {Bnn [kann] +k6nnh_18nn} ;J' P O,

species conservation:

dc;

— p,oﬁvén—' = phip, [u'J

o,

Ny

Maslen’s equation:
v,o
P=Psy — (77 - 1)
with
1

_ 1 Ohy
/ll 317n

33

(5.6.2)

(5.6.3)

— T, [U:’l,- + lezi]

2 Oc; 8,20h
s R o] i) e

6 h1 31],,

(5.6.5)

Min

(5.6.6)

. in .
:2'7) = nboz [psoﬁsoz/o pi (nn — 1) dnn] + ng, [PSOKsO A Pu‘hln]
Egs. (5.6.2),(5.6.3), and (5.6.4) are cast in the standard form for parabolic partial
differential equations to yield the following coefficients (see Appendix G):

§ - momentum:
2

€
Ap= ———
0 Npy?
& [ ou N ok, v
A= ——— B2 i
! 1y [(?nn +2 “hy O P Opnbo
e 1 Ohl) [0p NG Oh, } Pso P (_du, v am)
Ay = — | — +2 + =0 _—— 5.6.7
2 leOZ (h] 07’11 ann h] 01’" h] ¢ d€ nbO ann ( )
A—lllldp T — laplm 1 dny
5Tk £m0 u, 0 ny, Onn €50 | us de
A4 - 0
energy:
e k
Ao = _;l;;i
A — (2 ok k ahy -—2—§J _._’U_.C
e Ny, 2 Bnn hl o, Ny = O, Paopnbo Pf
A2 - 'U.)g. (5.68)

1
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species conservation:

Ay = —pyy prio} (5.6.9)

5.6.2 Shock Properties

On the stagnation line, the shock jump conditions of Section 5.5.2 simplify to
become

1
Vg = — 5.6.10
® sy ( )
2 7zu
Psy” = (P + 1) sy + L =0 (5.6.11)
1 Ry To ]
hog = hoo + 5 | 1 - [———-—"J ) (5.6.12)
0 2 ( Mair pso
hay = €Or00h0; (Tag) + €Maoo bty (Tog) (5.6.13)
CP-!O = cO?oc)CYPO,2 (Tso) + cNgovapNz (T’O) (5-6.14)
Doy = R’i"’o ‘ (5.6.15)
Mair,Iso
with
R,
Ohs M.
= ——Cur (5.6.16)
T, |, PsgPsy — 1

Equations Egs. (4.3.8) through (4.3.12) are solved using the iterative procedure of
Section 5.5.2.
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Next, the limiting forms of the shock derivatives defined in Section 5.5.2 must be
determined. The stagnation line value of the derivative of u, is given in Section 3.3.
The limiting forms of Egs. (5.5.19) and (5.5.20) are

(”’_‘J__’ﬂ-:z[T’O - }(USO—'I)}

Ks
1 dp,} B 0 { Chso

lim v O (5.6.17)
1 .6.
¢—0 | u, df Mar [Ty 4 1
R. T G/
and
1 dv, 1 1 1 . 1 dp,
= 2 v bl I L - - b

o R o Rl SR w1 o 3 G

respectively.

5.7 Surface Quantities

The relation for skin friction which was defined in Section 3.4 is still valid for
nonequilibrium flows. However, for chemically reacting flow, the effect of diffusion, in
addition to that of conduction, must be included in the heat flux calculations. The

heat transfer to the wall is
¢ = 4 + qil, (5.7.1)

where ¢} is the energy flux due to diffusion in the normal direction. This term can
be expressed as (see Appendix G)

*D;ZZI, —D*J* (5.7.2)

Written in nondiiensional form (see Appendix A),

N, Leis, Oc;
=€ hJi= ~c’~’§:" A2, a‘; (5.7.3)

=1

From Section 3.4, the heat flux due to conduction is

gc = ——621\27:: kaT

on  ny Onn (5.7-4)

Combining these components,

N,
Gu = [ or Zh J,] (5.7.5)
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or

_ #Lelz 30. _ ¢ N,
o = [ n Z J R [ OMn +Z$ Jw (5.7.6)

=1 i=1

For a noncatalytic surface,

(90,'
Oy w
and the heat transfer rate reduces to the familiar form

aT oT
Gu = —e [ an] - [AWJ (5.7.8)

=0 | (5.7.7)
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6 Turbulence

For turbulent flow, the governing equations are modified [41] using an eddy vis-
cosity model. In various efforts [33, 41, 42, 11, 43, 44] the Cebeci-Smith [45, 46, 47] or
Baldwin-Lomax [48] eddy viscosity models have been mated with VSL solvers. Such
algebraic (or zero-equation) models are less complicated than more exact approaches,
such as the Johnson-King [49] and two-cquation [50] models, and as a result are more
computationally efficient (although theoretically less accurate). The equations in this
chapter may be applied to perfect gas or equilibrium flows.

6.1 Viscous Shock Layer Equations

The VSL equations of Chapter 2 are modified [41] using an eddy viscosity model
so that they are applicable to turbulent flows. Simply put, the laminar transport
coefficients are supplemented with turbulence terms. Thus, replace

I with B e
where g, is the eddy viscosity, and replace
k with k + k

where k, is the eddy thermal conductivity.
By definition,

Copt
Pr= 22
T
so that
B k
Pr Cyp
The turbulent Prandtl number can be defined as
C He
Pr, = =2
Ty kt
so that
B _ ke
P?‘t C‘p

Thus, the thermal conductivity may be rewritien as

ko ko n +ﬂ_i€_(1+/_’1_’i’i)

E;_i_a_,:ﬁ Pr,  Pr it Pr

In this study, a value of 0.90 is used for the turbulent Prandtl number [44].
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Summarizing, the modifications to the governing equations are

p H Pr
”:a?”( +t) Pr:Pr te Pr,
where :
et = K
J;

These modifications affect only the energy and streamwise momentum equations.
Referring back to Egs. (2.1.2) and (2.1.3), thesc equations become
s - momentum:

p(iég+ (?u+uv(')hl)+ 1 dp 62{_(')_ [#(1+6+)8_:_”£%]

mds % Thon) Thies = \on - b
2 Ohy 1 Ohsy 4+ Ou u Oh,
+(hl%+hsan)[u(l+c )5 s an” (6.1.1)

energy: _
ok JOBY _uwdp  Op_
P hy ds on

™
d | u Pr) oh 7 ( Pr) Oh (1 0hy 1 0hs\
2 ¥ 1~ A+ V7 . % S il Bt | 1%
¢ {8n [Pr (1 te Pr, an] + Pr T+¢ Pry/ On \ h; On + hs On (6.1.2)

ou\? u Oh; Ou u Oh, 2
+ )} 9" —_
+u (1 te ) [(dn) 2h1 on anJ th (hl an)
Note: The described modifications are not performed on the higher order
terms.

Looking in the transformed system, Eqgs. (2.1.11) and (2.1.12) become
& - momentum:

(8020 gt e ldu 0] v [50 5ok
Psp hy u’@{ “ d¢ s ny d€ On, ne |Onn  hyOnn
1 |8p nu—1ldn, Op| €[ 0 s 9 udh
[—- O] ' “(He)é’nn “ 1 on.
2 (')h] 1 8h3 + ait u ahl
+ (H(‘)nn + hy (?nn) [ﬂ (1 e ) o h o, (6.1.3)

_fusu |Oh nn—lﬂf}h _iﬂ
PsP hy |0¢ ny d€ On, np an

energy:
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wgti [Op  m — ldng Op v Op
hy [(')f w,  d€ Oy, t o ny Onn ‘ (6.1.4)
e[ 9 | u Pry 0h i Oh {1 0hy 1 Ohs
Al 1 Rl ] it
ng {ann [ ( e Pu) 817n] + Pr( tet Prt) 0nn (h1 ONn + hs Onn
o\’  a Ok, Ou a b\’
a1+t — 2 —
+uy ”( te ){((')nn) hy Bnnann}+”(h1 Onn
As a result, Egs. (2.1.14) and (2.1.15) become
£ - momentum:
2
_ Y +
Ag = ——ng,u (1 + € )
(2 Jd 2 Bhl 1 8h3 [.l Bh
A =—— 1+ et 1+et) | — —_——
! nz [37]1;{ﬂ( te )}+ﬂ( e )(hlaﬂn+h381]n) h1877n
v usin, -1 gﬂ
Psb l + hy dﬁ} (6.1.5)

¢ oh du 1 &hy 1 Ohs psp [_dus, v Ohy
AQ__E(’HB%) [El:jL (’*1071n+’_l;55;>] +—hl—(u d¢ ‘“T-lza_ﬂn-)
g e )
57y || u, 06 ny Onn | us d€
ji

I

A4 = Psis
energy:
2

€ Pry
Ao—-—;b‘?)—r(l’f'é —P-r—t)
¢? Pr d (p p (1 0hy 1 Ohs
ne e B ()
! n} te Pr, [3% Pr + Pr \ h, On, t ha O,
v ugun, —ldn, ¢ u 0 ( + Pr)
—p,p | — Tl 2 27 1 Rl
PP [nb + hy ns df] n? Pron, te Pr,
A2 == 0

P ulOp mn—1 ldnbap +v3p
5T hl 85 np d{ ann ny Oy

LA @ O o [(8u\" a0k i
“ {”(hlann) +u(+) W an) ~*man.om

(6.1.6)

pu

hy .

Note: For ¢t = 0, the laminar cxpressions of Egs. (2.1.11), (2.1.12),
(2.1.14), and (2.1.15) are recovered from Egs. (6.1.3) through (6.1.6),

respectively.

A = psus
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6.2 Stagnation Line

If fully turbulent flow is to be considered, the limiting forms of the governing equa-
tions are needed in order to calculate stagnation line solution. As & — 0, Egs. (6.1.3)

and (6.1.4) reduce to

£ - momentum:
“2du, v | Ou u Ohy 1 . 1 {Op - l dnb Jp
ProP (h & g [W ¥ ‘Eann}) h 2‘1’5{ [ae m dE on, )] C2D

62 8 + (')ﬁ 7l 0h1 3 'dh] au u Bhl
- ;z? {6% [ﬂ (1 te ) I ”hl 87),1] t hy O, H (1 te ) My _”h—{ar)n

energy:

~ Oh (?p
G = (6.2.2)
e [0 [n Pr\ 0h 2 Ohy Pr\ Oh
R [0 E] 2 o)
N, {ar)n [Pr( e Pr, ar,,.] o hy On, Pr Te Pr,/ on,
It follows that Eqs. (6.1.5) and (6.1.6) become '
£ - momentum: \
& +
Ag = g ;t(l + ¢ )
62 6 3 (?hl H 3h1 v
A= - L4t l4et) -2 £, 52
e [ ) (i) Bt P
e (10~ [ou g Ohy Psof [ _du, v Ohy
Ay = — 2— 0 —_— - —— 2.
2 (hl (')1],,) [Bnn + hy O, * hy ! € ny, Oy (6:2:3)
4—ilim ldp nn——ldpl 1dn,
BT R (e=0 ] u, 8{ Ny, O €20 U df
A4 =0
energy: ,
_ o + PT)
=—-——2 11 —
Ao ny, Pr ( te Pr,
% ; Pr d (p 3 Ohy p
A= (] e 73?,) [ann ( )* by O, Pr
e u 0 Pr
— Py PV — ———— I +____)
PsuP? ny, Prom, ( e Pr,
Ay =0 (6.2.4)
dp
A3 = l)—a‘l—].“
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6.3 Turbulence Model

A turbulence model must be employed to define €, and the Cebeci-Smith model
is used here. It is a two-layer eddy viscosity formulation whose inner layer value, el
is based on Prandtl’s mixing length concept [51]. The outer layer value, €}, is given
by the Clauser-Klebanoff [52, 53] expression. The inner layer expression is used from
the wall outward until ¢ > €}.

Note: The Cebeci-Smith model was developed for a body-normal system,
however it is being applied here in a shock-normal environment.

In the laminar to turbulent transition region, the composite eddy viscosity is modified
using the Dhawan and Narashima [54] method.

6.3.1 Inner Layer

The inner layer eddy viscosity is based on Prandtl’s mixing length theory:

& = -’121-2--1— Ou _ u Ohy (6.3.1)
euny |00, hi Onn
The mixing length for the inner layer according to Van Driest [51] is
[ = K,npm, [1 — exrp (—n+/A+)] (6.3.2)
where the von Karman constant is
hN,=04

and the normal coordinate parameter is

Y [1‘_3 Ou ]1/2 (6.3.3)

¢t [pns [Omna],

In Ref. [44], the damping factor is defined as

-1/2
At =26 ( = ) (6.3.4)
T‘u}
where the local shear stress is
Jdu u dhy
= * - — 6.3.5
r=pn(l+¢ ) 5o~ O (6.3.5)

The subscript « indicates that quantity is evaluated at the wall.
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6.3.2 Outer Layer

The outer layer eddy viscosity is approximated by the Clauser-Klebanoff [52, 53]
expression:
web4yii
¢t = 0.0168222474 (6.3.6)
€2p
The displacement thickness is

& p
o = 71,,/0 (l - i) dn, (6.3.7)

Ue

where 6 is the value of 7, at the boundary layer edge. Klebanoff’s intermittency
factor [55] is

Y = [1 +5.5 (%)GJ R (6.3.8)

6.3.3 Boundary Layer Edge
By definition, at the boundary layer edge,

H

1

He
where the total enthalpy (H) is

u2+'l)2

H=5h+

Numerically, this can be approximated as the first grid point where

H
ekl C
T > 0.945

This approach can lead to oscillations at the boundary-layer edge. Reference [56]
proposes a different criteria, which is based on another characteristic of the boundary

d H
o (h:,) —0

Numerically, this is approximated as

d / H
—[(—1) <05
dn, (Hoo)—o“’

layer edge:

This is the criteria which is employed in the present work.



6.3. TURBULENCE MODEL 43

6.3.4 Transition

Transition from laminar to turbulent flow is modeled through the definition of a
streamwise transition intermittency factor [54]:

t

vie = 1 — exp(—0.412€%) (6.3.9)
where (€ — &)
¢ = 9.96-—> 20/
£ =2.96 (X - 1)] (6.3.10)

Before transition begins, the flow is laminar and ;¢ = 0. As £ — oo, it can be seen
that y;¢ — 1. In practical applications, this value of unity is essentially achieved at
€ = 5. Thus, transition begins at £ = & (as prescribed by the user) and continues
until £ = 5. Within the transition region, the local value of eddy viscosity is modified
by
c+ = t+"7,',€ (6311)
The value of X is dependent on the flow conditions and body geometry under
consideration [57]. It is usually determined empirically. In the results presented
later, a value of X = 2 is chosen for the purposes of comparison.
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7 Shock Layer Geometry

This chapter discusses the relations which define the shock and body shapes,
and the resultant shock layer thickness. Sections 7.1 and 7.2 discuss the analytic
expressions used to describe the body and shock shapes, respectively. Relations for
the shock layer thickness and its streamwise gradient are presented in Section 7.3. The
final section contrasts three coordinate transformations which have been investigated
as a part of this research.

7.1 Body Geometry

7.1.1 Forebody

For many configurations of interest, the body shape can be defined by an axisym-
metric conic equation:

‘I-Z =92 (zb — nbo) — by (zb - TL(,O)2 (711)

where ny, is the stagnation standoff distance and the nondimensional nose radius of
curvature has a value of unity. This is the equation of an axisymmetric conic body
whose nose is at (z, = Mgy, 76 = 0).

The character of the conic is dictated by by:

<0 , hyperboloid
=0 , paraboloid
>0 , ellipsoid
=1 , sphere

by

For a hyperboloid, the value of the cone angle, I, that the hyperboloid asymptotically

approaches is specified so that
by = —tan® I, (7.1.2)

For b, > 0, the value of &, is a required input. By setting &, > 0, Eq. (7.1.1) can be
used to define the forebody of an elliptic-cone, where b, = 1 is the special case of a

sphere-cone.
For the blunted body described by Eq. (7.1.1), the slope is

dry _ 1= b (5= ) (7.1.3)
dzb Tp
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7.1.2 Stagnation Line
From Eq. (2.1.4), the body radius is

ry = hgy =15 — npcos [, =r, [1 - anO: F,] (7.1.4)
On the stagnation line this becomes ’
Ty =T, [1 - 7""”301 = rshlb
so that Eq. (7.1.3) can be rewritien as
drbH]—bb(36_7lbo) 1 (1.15)

dzy rah, rshi,

7.1.3 Ellipsoid-Cone Juncture

At the juncture between the ellipsoidal forebody and cone afterbody, both the
position and slope of the body are continuous. Thus, the coordinates of this juncture
may be determined by equating Egs. (7.1.3) and (7.1.11). Solving for zy = zjunet
(after some manipulation) gives

1 in[
Zjunct = Ty + B“ {1 - Sne } (716)
b \/bb cos? Ty + sin® Ty

Now the corresponding value for rjyuc can be found from Eq. (7.1.1):

1-12“6‘ =2 (zju,,c, — "bo) — by (z,-,mt - ”60)2 (7.1.7)
For the special case of a sphere-cone (by = 1):
Zjunct = Ny + 1 —sin T (7.1.8)
and
Tiunct = c0s ['y (7.1.9)

For zy < Zjunet, the body is defined by the equations of Section 7.1.1. After this
juncture, the body shape is described by the equations of Section 7.1.4.

7.1.4 Afterbody

The cone afterbody is given by
Ts = Tjunct + (Zb - zjunct) tan Iy (7110)

where Tjuner and Zjune are the coordinates of the ellipsoid-cone juncture, defined in
Section 7.1.3. The slope of the cone is

d .
:l—y—b =tanT} (7.1.11)

2p
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7.2 Shock Shape

7.2.1 Subsonic-Transonic Region

The body shape in the nose region is described by a conic equation (see Sec-
tion 7.1.1). Van Dyke and Gordon [64] suggest that a conic body generates a conic
shock shape, so the subsonic-transonic region is described by a conic equation:

r? = 2C,z, — b,z? (7.2.1)
where C, is the value of the shock radius of curvature on the stagnation line and b,
determines the conic’s character.

Since the shock shape is defined analytically, closed-form expressions for the quan-
tities listed below may be determined. (see Appendix K for details). The shock angle

can be found from
cos I,

sinly = (Cy = by2,) . (7.2.2)
The curvature is given by
g, = oL (sin® Iy + by cos I, (7.2.3)
T's
Further, the gradient of the curvature is
‘Z; = 3, sin F% (b, — 1) (7.2.4)

Referring to kiq. (2.2.4), the streamwise pressure derivative can be rewritten as

0) d; s - .
gg ,7 = dl; + ?——Q—I—ns sin I, {u, + 3u,cos’ Ty (b, — 1) + fc,r,} (7.2.5)
‘- 1 sl's . d s
_7 Qv K, sin? [, cos T, (bs— 1)+ (1 + il ) sin F,—v— — v4kgcos T,
4 cos I, d¢
In addition, from Eq. (2.2.7), the streamwise derivative of n becomes
(B)_Z ,, =(y—1) % cos Iy (by — 1) | (7.2.6)

On the stagnation line, Kq. (7.2.4) has the following limiting form:

I 1 dn,
ET& cosT'y d€

} = 3Kgy% (by — 1) (7.2.7)
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Thus, Eq. (2.4.12) becomes

. 1 dp) _ .. 1 dps
%Lﬂé{z—t)—g} —2'1_1{(1){";—(1-{}’*"'{30 (77—1) (7.2-8)

and Eq. (2.4.16) becomes

L0
€Tl]1 ry 0

7.2.2 Supersonic Region

} = (g —-1) %Qﬁ,ogbs ~1) (7.2.9)

Since the supersonic region is hyperbolic-parabolic in nature, a marching proce-
dure is employed. The shock shape segment between the previous (k — 1) and current
(k) stations is described by a truncated Taylor’s series (see Appendix L for details):

ry =70+ 71 (Az,) + % (Az,)2 + % (Az,)3 (7.2.10)
where
Azg = 25 — 25, _,
The shock angle can be found from
dry, . . 3
tan 'y, = d7~ =7 + 72 (Az) + % (Az,)? (7.2.11)
The curvature is given by
_ 3 d*r,
ks = —cos” I’ 1 (7.2.12)
where 2
Ts . .
Tz = 12 + 73 (Azy) (7.2.13)

In this marching region, a simple backward difference representation of the pres-
sure derivative is employed. Thus, at a given point k on station j,

BP Pk,j — Pk-1,;
—_— == 7.2.14
0¢ A&y ( )

Nn

where

Ab = & — &k
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7.3 Shock Layer

With each iteration in the solution of the governing equations, a calculated value
of the shock layer thickness may be determined from the continuity equation. In
addition, the analytic expressions for the shock and body shape provide the means of
calculating a geometric value of the thickness. If the equation used for the shock shape
is reasonable, then these two values should match. This observation serves as the
criteria for shock-shape convergence at a given station (see Chapter 8). Expressions
for the calculated and geometric thickness values are given below. In addition, an
analytic expression for the gradient of the shock layer thickness (a term which appears
in the governing equations) is presented.

7.3.1 Calculated Thickness

The continuity equation can be used to determine the shock layer thickness based
on the conservation of mass. This calculated thickness (see Appendix D) is defined

by the following quadratic for ny:
1 1
n? [p,u, cos F’./o pumn — 1) dnn] + ny [p,,uﬂ',/o ﬁﬂdnnJ -¥,=0 (7.3.1)
Dividing by ¥,, Eq. (7.3.1) can be written as
scos’y 1 us 1
n? [2,),"—“);— / G (i — l)dnn} + 1y [zp,i / pudnn] ~1=0  (7.32)
r? 0 r, Jo
As £ — 0, Eq. (7.3.2) becomes (see Appendix E)
1 1
nf [2,0,&3/0 pu(n, — 1) dnn] +ny [Qp,rcs/o pudq,,] —-1=0 (7.3.3)

This expression is used to define the stagnation standofl distance, Mg

7.3.2 Geometric Thickness

Through geometric considerations,

ry =1, —my, cos T, (7.3.4)

where

”bg = \/(2’_, - 26)2 + ("‘s - 7‘b)2 (73.5)
is the geometric shock layer thickness (measured along a shock normal).

Differentiating with respect to £ gives

%’% — hy,sinT, — (fz_? cos T, (7.3.6)
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Similarly,
2y = 2+t sin by (7.3.7)
Differentiating with respect to £ gives
dz Lodny
d_; = hy,cos Iy + —d’—'; sinT, (7.3.8)

However, J

dTb drb Zp

B dn & (7.3.9)
where dry/dzs is the local slope of the body geometry. Combine Egs. (7.3.6), (7.3.8),

and (7.3.9) to get

d
h‘b [sin Iy — s cos Fs]
dn _ R (7.3.10)
dé Lodry o
cos 'y + —sin [,
dzp

which is valid for any body geometry.
A shock normal has a slope of

. dr, -
n=—
dz,

Thus, the equation of the shock normal line passing through the shock point (z3,7s)
and intersecting the body at point (z5,73) is

ry = mz + (rs —maz,) (7.3.11)

Forebody
Combining Eqs. (7.1.1) and (7.3.11) gives
(7112 + bb) zi+2 [(7'3 —mzg)m — by, — l] 2+ (rs —mz,)* + bbnbo2 + 2np, = 0
(7.3.12)

This quadratic can be solved for 2, and then ry is found from Eq. (7.1.1). With dry/dzy
defined by Eq. (7.1.3), the gradient of the shock layer thickness can be determined

from Eq. (7.3.10).

Stagnation Line

The limit of Eq. (7.3.10) as £ — 0 1s

lim
{—0

d?”b
1 — —cosT
{ ! ""b}: il [ da ] (7.3.13)

cos I's dry

cos 'y d¢ ary
dzy
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Now combine Lq. (7.1.5) with this result to get

i
| i e~ e T k] (319
rshy,
so that
lim {co:r,(z_?} = hy, [Cohy, — 1] (7.3.15)
Afterbody

Combining Egs. (7.1.10) and (7.3.11) gives

Tjunct — Zjunct tan | b — (T‘_, - mzs)

(7.3.16)

= m — tan 1’y
Substitute into Eq. (7.1.10) to get r. Utilizing Eq. (7.1.11), the shock layer thickness
gradient is determined from Eq. (7.3.10).

7.4 Spacing Across Layer

At the beginning of this investigation, a considerable effort went into the devel-
opment of an inviscid nonequilibrium algorithm. In this early work, the governing
equations were transformed to a streamline coordinate system (Figure 7.1). In this
transformed space, the solution was advanced by marching along streamlines. At each
new station, the shock streamline is added 1o the grid. Thus, if a constant number
of points is desired, an automated procedure for dropping streamlines is required.

In Ref. [29], n (where n = ¥/W¥,) was found to be a better transformation coor-
dinate since it allowed more control of the spacing than the streamline method. In
addition, this transformation gives a constant number of points across the layer for
each station. Since viscous effects were to be included eventually in the nonequilib-
rium algorithm, a switch from the streamline approach seemed inevitable. Unfortu-
nately, this decision meant abandoning the explicit approach under development by
this author.

In Ref. [29], the solution is advanced along lines of constant  (Figure 7.2). The
spacing is still based on mass flow through the layer, rather than on physical distance
across the layer. While this transformation to % is an improvement over ¥, it still
yields a grid-point distribution which is less than optimal in the near-wall region of
the shock layer. In fact, the points cluster near the shock, rather than near the wall.
As will be shown in Chapter 9, the shock layer profiles from the method of Ref. [29]
exhibit oscillations as a result of this spacing.
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Figure 7.1. Equally-spaced lines of constant ¥ (streamlines).

Figure 7.2. Equally-spaced lines of constant 1.

a1
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¥4

Figure 7.3. Equally-spaced lines of constant z,.

In order to better control the spacing across the layer in the present technique, a
transformation to normalized coordinates as described in Chapter 2 is used. Recall
the definition of the following computational variables:

=35 N =1-— L
ny
This normal spacing based on n, (Figure 7.3) is analogous to the spacing used in
Ref. [9]. Although Figures 7.2 and 7.3 show equally-spaced lines, these spacing func-
tions lend themselves to clustering. However, since the physical distance to which n
corresponds varies in the streamwise direction, determining a distribution which will
work well for the duration of a given solution can be difficult. On the other hand,
since there is no streamwise variation in the normalized distance that n represents,
finding a suitable distribution is more straightforward in the present approach.

The following distribution function [9] may be used to define the spacing across

the shock layer:

;= Jo + J2 = fo : ' (7.4.1)
1 + ('il'p {nslp ["”brk - (.1 - 1)]}
where T, 271~ 1
Jo = ;I—]—TTI (742)
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In addition, j, is the total number of grid points, 7, , is the point through which the
exponential fit passes, 7., is the geometric stretching factor, s, is the intercept on
the axis which determines the slope of the linear distribution near the shock, and Ty
is the slope of the fit at 7, ,. This function clusters points according to a geometric
progression near the wall, a linear distribution near the shock, and an exponential
fit for the interior of the shock layer. If 7, , < 0 is specified, a simple geometric
progression is used so that

dn; = ag diin;_y (7.4.4)
fay = Un;_y + diln; (7.4.5)
and .
n"fac -
dnn, = -nn—jaCJT;—:‘I (7.4.6)

This relation clusters points near the wall, but not at the shock.

For the perfect gas and equilibrium solutions presented in Chapter 9, j, = 101,
while for the nonequilibrium solutions, j, = 51. The factors corresponding to these
values of j, are

j, =5l j, =101
Mgy = 30 Ty = 60
Mg = 117 Mgy, = 1.13
My = 0. Mjme = 0.

Uny, = 0.13 Ty, = 0.1
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8 Method of Solution

The procedure for solving the equations presented in the preceding chapters is out-
lined here. First, an introduction to the issue of generating the shock shape is given.
Next, the quasi-linearization of the streamwise momentum equation is discussed. The
procedure for numerically integrating the equations of standard parabolic form is pre-
sented in Section 8.3. The chapter concludes with a discussion on the advancement
of the solution from one station to the next.

8.1 Shock Shape

The {ull VSL approach requires the user to input an initial shock shape, which is
used to calculate a first iteration solution. The shock shape calculated in the first-
iteration solution must then be smoothed and used as the input shape for a second
iteration. This user-controlled process is continued until the new calculated shock
shape varies little from the input shape (usually 2 to 4 iterations). In the design
environment, such requirements of the user are undesirable.

Automating this process was addressed in Ref. [29] by incorporating a shock it-
eration technique in the solution. Since the subsonic-transonic region is elliptic in
nature, this portion of the flowfield must be solved in a global fashion. The deriva-
tive of shock layer thickness is described in terms of a cubic equation involving the
body radius where an iterative procedure is applied to determine its coefficients. This
process typically requires ten to twenty iterations to obtain a converged shock shape.

A marching technique is employed aft of the subsonic-transonic region, since the
inviscid layer is supersonic. For this region, the shock shape at the current station is
extrapolated from the previous station using a cubic equation for the shock radius as
a function of axial location. Requirements that this expression match the position,
slope, and curvature at the previous station leaves one free coefficient (essentially the
shock curvature derivative). An iterative technique is employed to determine this
value based on comparisons between the shock standoff distance obtained from the
flowfield solution and the geometric distance between the shock and body curves.
When these two values agree to within the prescribed tolerance, the solution is ad-
vanced downstream to the next station. The iterative procedure used in Ref. [29] is
sensitive, so this marching technique is often slow to converge.

The current technique also generates its shock shape as part of the solution. The
details are given in Section 8.4. Before discussing that topic, the linearization pro-
cedure is given in Section 8.2. Then, an outline of the solution of the governing

equations is presented in Section 8.3.
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8.2 Streamwise Momentum Linearization

The usual approach to handling the nonlinearities in the VSL equations is to eval-
uate the A,, coefficients (1n = 0,1,2,3,4) from the most recent information available.
For example, the value of u obtained in the most recent solution of the streamwise
momentum equation is used in loading the coefficients for solving the energy equation.
This approach, which essentially treats all such quantities as knowns, still leaves the
following nonlinear terms in the streamwise momentum equation:

i ?E i _(_)_ﬁ 2
oy o€

For the energy equation, the nonlinearities are handled through a simple lagging
technique. However, in order to speed convergence, the streamwise momentum equa-
tion is quasi-linearized [65]. This process involves expressing u as

i =, + A (8.2.1)

where the subscript » denotes evaluation at the previous iteration and Au is the
change in @ from the previous iteration. Differentiating Eq. (8.2.1) with respect to

N, gives
ou Jdu ou
gu _9Ul LA 2.
On Onal, (377,,) (8:2.2)
and differentiating Eq. (8.2.1) with respect to £ gives
du  Ou Ju
— == + A(,——) 8.2.3
o¢ = 2¢|, T 2\ e (8.2.3)
Using these representations,
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so that if the higher order term is dropped, then
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Using Egs. (8.2.1) and (8.2.2) this can be rewritten as

Jdu ou ou ou
e =4 = | U + iUy — U 2.
u(?nn { 67711 u} +u (8 5)

. iy
) Im On |,



56 8. METHOD OF SOLUTION

Similarly,
(8.2.6)
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u? = 2{uyu} — ul (8.2.7)

The “bracketed” portions of these three expressions are the terms which would be
present without linearization. Eqs. (8.2.5) through (8.2.7) are substituted back into
the {-momentum equation to obtain the linearized form of the equation.

This linearization process only affects the A, and A; coefficients of the stream-
wise momentum equation. Based on Eq. (6.1.5), the coeficients for the streamwise
momentum equation become
& - momentum:

and finally,
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On the stagnation line, these become

¢ - momentum:
2
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8.3 Equations of Standard Parabolic Form

A finite-differcnce approach is used to solve the {-momentum, energy, and species
conservation equations (for nonequilibrium flow). As mentioned earlier, the first step
is to write these equations in the standard parabolic form:

>FPw ow ow
Ap—+ A + AW + As+ Ay =
Towr T Mom, T T o
where W represents the dependent variables @, h, and ;. Next, finite-difference
representations are substituted for the partial derivatives. A two-point backward
difference is used for the partial derivatives with respect to £. For a fully implicit
scheme, a three-point central-difference of values at the current station is used for the
partial derivatives with respect to 7,. Thus, for an arbitrary point j at station k

PW  2[Wi i — (14 B) Wi, + BWi,j1]

0 (8.3.1)
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In a more general approach, the 7,-derivatives are differenced about point (k—1+40,7)

where

Crank Nicholson
, fully implicit

k)

0 , fully explicit
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The derivatives now become
W
on?

n

= on {Wijn1 — (1 + B) Wiy + fWi,;-1] © (8.3.5)
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+ Wiorion = (1+ B) Wiy + BWiy 1] (1 — )}

and
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In addition, the quantity W is evaluated at point (k — 1 + 0,7):
W=W,,0+W._,,(1-0) (8.3.7)

Making use of these expressions, Eq. (8.3.1) takes the form
/ij[’Vk_j..l + BJ' Wk’j + C_.,'Wk,ﬁ.] = D_,' (838)
where }
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On the stagnation line (since Ay = 0 for the streamwise momentum, energy, and
species conservation equations), the coeflicients reduce to

+ A, + Azwk_l,j} (1-0)

k-1, k—1,7
Aj = [BAc — arp? A1) ©

By = |=an (14 8) Ao —az (1 - 67) A1 + 4] ©
CJ = [a1A0 +C¥2A1]®

IPW ow
DJ =—Az — {Ao o2 + A ) +A2Wk..1,j}(l—@)
M k-1, M k=15
The results presented in Chapter 9 were generated with the fully-implicit approach

(©=1).
Evaluating the coefficients of Eq. (8.3.8) at discrete points across the shock layer
yields a tri-diagonal system of equations which may be solved using Thomas’ algo-

rithm [66]. The general solution is
Wi = E;Weip + F (8.3.9)
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where .
EJ':——;—-—C—:——.,—
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The boundary condition at the shock is
Wi, = Ws
On the body, the general boundary condition is

ow

0
0 ann

+ 0, Wiy + 6, =0
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In finite difference form, this can be written as

Wi — W,
b0 [—iﬁ———k—‘} + 0 Wii +82=0
An,
or X i
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where p p
= o - 27
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If the wall condition is specified,
Wiy = W,
so that N 3
Fi=0 Fr=W,
If the wall gradient is specified,
ow ow
an” k21 6"" w
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In the special case of
ow
ALl R
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this gives
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(8.3.10)

(8.3.11)

(8.3.12)

(8.3.13)

(8.3.14)

(8.3.15)

(8.3.16)

(8.3.17)
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Implementation of the algorithni involves first evaluating E'j and ﬁ} from j = 2 up to
J =Js— 1, and then solving Eq. (8.3.9) for W, ; from j = j, — 1 down toj=1.

For a given station and shock shape, the governing equations are solved in the
following order. The streamwise momentum and cnergy equations are solved for @
and A, respectively. The equation of state gives p- From the continuity equation,
the shock layer thickness is determined. The pressure distribution is found directly
from Maslen’s expression. The normal velocity distribution is extracted from the
continuity equation after the standoff distance has been determined.

8.4 Advancing the Solution

The previous sections in this chapter explain the solution procedure of the govern-
ing equations for a known shock shape at a given station. More precisely, holding the
shock geometry (and the resulting jump conditions) constant, the fluid equations may
be satisfied in an iterative fashion. From this solution, a calculated shock layer thick-
ness for the current station is determined. This value is compared to the geometric
shock standoff distance, with the difference between the two dictating the adjustment
of the shock shape. After convergence of the shock shape for a given station, the so-
lution is advanced to the next station, using the current profiles to initialize the new
station. The discussion now turns to how the shock shape is actually determined.

Maslen’s original method [18, 21] is an inverse technique. That is, a shock shape
is prescribed and the resulting calculated body shape is compared with the desired
body shape. The shock shape is then adjusted in an iterative fashion until the desired
body shape is obtained. Riley and DeJarnette (67, 68, 69] automate this process for
blunt bodies where separate approaches must be used for the nose region and the
remainder of the flowfield.

The current approach parallels that of Ref. [29] in that the shock shape is generated
as part of the solution, rather than being an input required of the user. However,
the approach of Riley and DeJarnette serves as a model for the technique employed
here, since it provides a smooth shock shape within relatively few iterations. In the
subsonic region, a conic equation is used to describe the shock radius as a function
of axial position. The marching procedure again utilizes a cubic equation with one
parameter to be determined iteratively. The details of the iterative procedures used
to determine the shock shapes for the subsonic and marching regions are presented
in Sections 8.4.1 and 8.4.2, respectively.

8.4.1 Subsonic-Transonic Region

Since the subsonic-transonic region is elliptic in nature, this portion of the flowfield
must be solved in a global fashion. As discussed in Section 7.2.1, the shock shape for
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the subsonic-transonic region is described by

12 =2C,z, — b,z} (8.4.1)
where C, is the value of the shock radius of curvature on the stagnation line and b,
determines the conic’s character. For a given body shape, three parameters (bs, Cs,
and ny) constrain the geometry of the shock-body tandem (and hence, the shock
layer). The value of ny, is the shock layer thickness (standoff distance) calculated
from the stagnation line solution (see Section 7.3.1).

The quantities b, and C, are determined through a quasi-Newton iterative pro-
cedure. With each variation of these two parameters, the flowfield is solved for the
entire subsonic region. The fluid equations are solved at eleven discrete stations be-
ginning on the stagnation line (giving ns,). The values for the calculated shock layer
thickness at two stations near the end of the subsonic region are compared with the
values dictated by the geometry (see Section 7.3). Shock iterations are continued
until the calculated values of n, at these two stations match the geometric values.
Typically only four to six iterations are required to converge the shock shape.

8.4.2 Supersonic Region

Since the supersonic region is hyperbolic-parabolic in nature, a marching proce-
dure is employed. Recall from Section 7.2.2, the shock shape for the region between
the previous and current stations is described by a truncated Taylor’s series (see
Appendix L for details):

dr A2 [ d*r d’r
Py =1y, + A2y —| +—2 [2 e R ] (8.4.2)
k-1 dz,|,_, 6 dz2 | _, dz%|,
where the shock derivative is given by
dry  dr, Az, [ dPrg d’r,
T T i [dz . } (8.4.3)
dz, dz, o1 2 22|, dz? N

and ’

Azy =2, — 25,

Written in this form, the only unknown is the second derivative of r, with respect to z,
(which is proportional to the shock curvature) at the current station. This parameter
is determined through the iterative process described in the next paragraph. Note
that Ref. [29] iterates about the derivative of the shock curvature, which is a more
sensitive procedure.

The position, slope, and curvature of the shock at the previous station are known.
Thus, the curvature at the current station is the only unknown in Eqgs. 8.4.2 and 8.4.3.
As a first guess, the d?r,/dz? term at station k is extrapolated from its values at the
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previous two stations. With the shock geometry (and corresponding jump conditions)
constrained, the fluid equations are solved. Then the calculated and geometric values
of ny are compared to determine an error (6crr).  After perturbing the guess for
d*r,/dz? (which alters the shock position and slope), the governing equations are
solved to determine a new value for 6,,.. Now the second derivative at station k may
be updated using the secant method:

} (8.4.4)

P

The subscript 5 denotes a value from the previous iteration. Through successive
applications of the secant method (accompanied by a solution to the fluid equations),
8err — 0, with shock shape convergence typically obtained in three to four iterations
per station.

&P, dr, 8err {d%s &r,

dz? 22 » Sory — 6mlp dz? dz2
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9 Results and Discussion

Results generated with the present algorithm are given in this chapter, which is
divided into three sections: perfect gas, equilibrium, and nonequilibrium solutions.
In an effort to evaluate the accuracy of this new approach, the comparisons outlined
below are made. Heating rates are shown alongside experimental or flight data, where
available. In addition, the perfect gas solutions are compared with the results of the
VSL [9] and Grantz [29] approaches. Comparisons with the VSL solver of Ref. [9] are
also made for equilibrium flows. The nonequilibrium results are compared with those

of Ref. [14]. Specific areas to be addressed are:

1) surface properties, including examination of the stagnation region;
2) shock shapes;

3) shock layer profiles of dependent variables;

4) run times.

The algorithms employed here are fully-implicit (see Section 8.3). For the perfect
gas and equilibrium results, 101 points across the layer are used by each of the methods
(see Section 7.4). The nonequilibrium solutions are based on 51 points across the layer
for the VSL and present method. The results are plotted in nondimensional form (see
Appendix A), with the dependent variable on a logarithmic scale in most cases. Note
that in this chapter, the superscript * is omitted on the dimensional quantities.
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9.1 Perfect Gas

Two cases are presented in this section. The first case is a 5° sphere-cone with
a length of approximately 140 ft. Two solutions with different nose radii are calcu-
lated in Ref. [70] in a study of bluntness effects. Comparisons with those results are
made here. The geometry of the second case is a 15° sphere-cone with a length of
approximately 20 in. Again the solutions are obtained for two different nose radii,
and the results are compared with experimental data [71]. For each case, analysis of
the second radius is limited to surface properties in the interest of brevity.

Case 1

For Case 1, Mach 15 flow over a 5° sphere-cone is calculated using the VSL [9],
Grantz [29], and present approaches. The freestream conditions are P = 0.018919
psi and T, = 478°R, with a wall temperature of T, = 2259.69°R. Fully-laminar
solutions are calculated, as well as solutions where the flow transitions to turbulence.
The beginning of transition is an input for all three approaches. The VSL heating
results are from Ref. [70].

First, the solution for R,,,. = 1.5 in is calculated for a body length of Sy, = 1125.
The transition point is specified to be s, = 192. Figure 9.1 shows the body shape
along with the shock shapes (fully-laminar) calculated with the three methods. The
approximate (Grantz and present) techniques agree with the VSL results as the sharp
cone solution is approached. However, from the close-up given in Figure 9.2, note that
the two approximate approaches yield a thinner shock layer than the VSL algorithm
in the pressure overexpansion region.

In Figure 9.3, the computed heating results from the three solutions are presented
for both laminar and turbulent flows. The laminar results of the VSL and present
method are in excellent agreement overall, while those of Ref. [29] are at an approx-
imately ten to fifteen percent higher level. Downstream of the nose region (for s,
between approximately 10 and 100), both approximate techniques over-predict the
VSL heating results. It is believed that Maslen’s pressure relation is the source of this
deviation, as will be discussed in the next paragraph. The turbulent results of the
VSL and present method are in excellent agreement overall, with those of Ref. [29]
approximately twenty percent higher. The transition heating fesults (see Figure 9.3)
of Grantz [29] reflect an error in the application of the transition model.

Figure 9.4 shows the body pressure distributions from the three methods for the
fully-laminar solution. The computed pressure distributions are in excellent agree-
ment (within five percent) except in the pressure overexpansion /recompression region.
In this region, the shock and body angles are quite different (see Figure 9.2) for slen-
der cones, violating one of Maslen’s assumptions. Apparently, this poor pressure
prediction feeds back into the shock shape which is generated as part of the solution,
to give the shock shape deviation mentioned carlier. As a result, the VSL shock layer
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thickness (and also the thickness gradient) in this region differs from the values given
by the approximate methods. Since the thickness gradient plays a prominent role in
the governing equations, this deviation is reflected in the shock layer profiles, as well
as the surface properties. The effect of the differences in the overexpansion region di-
minishes further downstream, as can be seen in the figures. A similar phenomena has
been seen in the inviscid technique of Riley and DeJarnette [68], which also employs
Maslen’s pressure relation.

Figures 9.5 and 9.6 provide more detailed information on the stagnation region
results. As the stagnation line is approached (s, — 0), dg,,/dsy — 0 and dp,/dsy — 0.
Note that the heating results from the current method approach the stagnation line
more smoothly than those of either Ref. {29] or the VSL method. This is a direct result
of the limiting form of the governing equations used here (see Section 2.4). Note also
that the results of Ref. [29] are approximately twenty percent higher than the other
two solutions in this region, and do not approach a zero gradient at the stagnation
line. In Figure 9.6, the stagnation region pressure distribution is reasonably smooth
for all three methods.

Skin friction results are presented in Figures 9.7 and 9.8. The method of Ref. [29]
does not compute this parameter, hence it is excluded from this comparison. Both
the laminar and turbulent results are in excellent agreement, (generally within five
percent). This result is not surprising since Reynolds analogy relates the skin friction
to the heat transfer. Therefore, good agreement for the skin friction is expected in
those areas where the heat transfer is predicted well. As shown in Figure 9.8, the
present method has a smoother distribution in the stagnation region.

Now consider the stagnation line profiles. Figure 9.9 shows the pressure predic-
tions to be within 0.5 percent of one another. In Figure 9.10, note that the normal
velocity results of the VSL and present method are virtually identical, while the re-
sults of Ref. [29] differ from them slightly. The approximate relation for v used in
Ref. [29] is the source of this difference. The tangential velocity is zero on the stagna-
tion line, but a finite non-zero value for its normalized form (4 = u/ u,) is calculated
from the limiting form of the streamwise momentum equation (see Section 2.4). Pro-
files of this normalized velocity are shown in Figure 9.11. The approximate results
are in close agreement with each other, while the VSL results are different. This dif-
ference may be due to the VSL limiting form of the streamwise momentum equation
(see Section 2.4). Figures 9.12 and 9.13 show that the enthalpy and density profiles
of the three methods are virtually identical on the stagnation line. The density “mir-
rors” the accuracy of the other results (since it is calculated from the state equation),
so in the remainder of this chapter it will be shown only sparingly.

Pressure profiles near the pressure minimum (s = 40) and at the end of the body
(sy ~ 1125) are presented in Figures 9.14 and 9.15, respectively. The approximate
results are virtually identical. Agreement with the VSL solution is excellent as the
sharp cone limit is reached. Even in the pressure minimum region, where the deviation
is largest, the Maslen pressures are generally within ten to fifteen percent of the VSL
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Figure 9.9. Pressure profile comparison for 5° sphere-cone,
Rnose = 1.5 in (stagnalion line).
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Figure 9.10. Normal velocity profile comparison for 5° sphere-cone,

R0 = 1.5 in (stagnation line).
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Figure 9.11. Tangential velocity profile comparison for 5° sphere-cone,
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Figure 9.12. Enthalpy profile comparison for 5° sphere-cone,

Rpose = 1.5 in (stagnation line).
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Figure 9.13. Density profile comparison for 5° sphere-cone,
Rnose = 1.5 in (stagnation line).

results.

For purposes of comparison, the velocities calculated in the two approximate
methods (solved in a shock-normal system) are resolved into body-normal compo-
nents. The velocity component normal to the body is shown in Figures 9.16 and 9.17.
The limitations of the approximate expression for v which is used in the method of
Ref. [29] are readily apparent. This component is small relative to @ and A except in
the near-wall region. As a result, its poor prediction has minimal effect on the overall
shock layer solution outside of the boundary layer. In the pressure minimum region,
the other two techniques agree well near the wall. The last station exhibits excellent
agreement between the VSL and present approaches.

The body-tangential velocities are shown in Figures 9.18 and 9.19, and the three
approaches are in good agreement. The enthalpy profiles of the present and VSL
approaches, shown in Figure 9.20 and 9.21, also agree well with one another. At
the end station, the results of Ref. [29] differ in the boundary layer. This difference
is reflected in the heating rates, and is due to the inaccuracies of the approximate
relation for the normal component of velocity. Also at the end station, note the
severe oscillations around the boundary-layer edge which are present in the results
of Grantz [29]. Figure 9.19 shows wiggles in the tangential velocity profiles as well.
This is the result of not having enough points in this region. A grid adjustment is in
order, but since the Ref. [29] normal spacing is based on the stream function rather
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Figure 9.14. Pressure profile comparison for 5° sphere-cone,
Rnose = 1.5 in (s = 40).
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Figure 9.15. Pressure profile comparison for 5° sphere-cone,
Ruose = 1.5 in (sp = 1125).
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Figure 9.16. Normal velocity profile comparison for 5° sphere-cone,
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Figure 9.17. Normal velocity profile comparison for 5° sphere-cone,

Rpose = 1.5 in (55 & 1125).
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Figure 9.18. Tangential velocity profile comparison for 5° sphere-cone,
Rnoae = 1.5 in (Sb ~ 40)
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Figure 9.19. Tangential velocity profile comparison for 5° sphere-cone,
Rucse = 1.5 in (8, = 1125).
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Figure 9.20. Enthalpy profile comparison for 5° sphere-cone,
Rogse = 1.5 in (s = 40).
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Figure 9.21. Enthalpy profile comparison for 5° sphere-cone,
Rucse = 1.5 in (s, = 1125).
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Table 9.1. Run-times® for 5° cone, Ry, = 1.5 in.

Il | VSL T Ref. [29] | Present
stations 643 333 209
CPU time 4232 867 408
grid pts/sec 15 39 52
shock iterations 3.0 6.5 2.3
grid pts/sec/shock || 46 252 121

& - Sun Sparcstation 1+
than a physical distance, an adequate distribution is difficult to determine. These
wiggles, which are documented in Ref. [27], were repeatedly observed early on in this
research and were the motivation for switching from - to nn-spacing, which is based
on distance across the layer.

Since the nature of this research is to develop an approach for use in preliminary
design, where computational speed is an important consideration, some comparisons
in run time are presented. Table 9.1 shows the overall run times required to generate
the turbulent solution for the 5° sphere-cone. The value shown for the VSL results
is the total time required for three shock iterations. However, the CPU requirements
to generate the initial and second shock shapes are not included, so this figure is a
low estimate for the VSL method. It can be seen that the current algorithm yields
a dramatic decrease in total CPU requirements over both the VSL and Ref. [29]
techniques. Since varying numbers of streamwise stations are used by each of these
approaches, the average number of grid points solved per second is also presented. As
shown, three global iterations of the shock shape are required for the VSL solution.
The approximate methods iteratively determine the shock shape as the solution is
advanced from one station to the next. In this case, for a given station, the method
of Grantz [29] requires an average of 6.5 iterations to converge the shock shape, while
the present technique averages 2.3 iterations. The last entry in the table takes into
account the number of shock shapes calculated, and gives the processing capabilities of
each approach for a given shock shape. This illustrates that solving the approximate
VSL equations of the present method is inherently 2.5 times as fast as solving the
full VSL equations. The method of Ref. [29] is able to process many more grid
points/sec/shock shape than the current approach and this can be attributed to its
more approximate governing equations.

The solution with a nose radius of Ruee = 9 0 and a body length of Shg = 180
will now be discussed. The transition point is an input whose value is s = 72.
Because of this larger nose radius, bluntness effects are present for the length of the
body. In the interest of brevity, the comparisons are limited to surface properties.
The results for this body are similar to the results for the first 200 nose radii of
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Figure 9.22. Heat transfer comparison for 5¢ sphere-cone, R,,5. = 9 in.

the first body. Figures 9.22 through 9.24 show that the heating rates, laminar body
pressures, and skin friction distributions follow the same trends cited above. That is,
the results of the approximate approaches are in generally good agreement with the
VSL solution. Likewise, the shock-layer profiles (not shown) follow patterns similar
to those of the R,,,. = 1.5 in solutions.
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Figure 9.23. Body pressure comparison for 5° sphere-cone, Rpose = 9 in.
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Figure 9.24. Skin friction com parison for 5° sphere-cone, Ryose = 9 0.
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Figure 9.25. Shock shape comparison for 15° sphere-cone, R,,.. = 1.1 in.

Case 2

For Case 2, Mach 10.6 flow over a 15° spherc-cone is calculated using the VSL [9],
Grantz [29], and present approaches. The freestream conditions are P = 0.01915
psi and T, = 85.2079°R, with a wall temperature of T, = 540°R. Heating rate
comparisons are made with Cleary’s experimental data [71].

First, the solution for R,,, = 1.1 in is calculated for a body length of s,y = 20.
Figure 9.25 shows the shock shapes from the three methods. As with the 5° cone, the
two approximate techniques yield a thinner shock layer in the pressure overexpansion
region than the VSL algorithm. The flare at the end of the shock shape of Ref. [29)
reflects an incorrect interpolation for the last computational station.

In Figure 9.26, the heating results from the three solutions are presented and
are secn to compare well (generally within fiftcen percent) with the experimental
data. Figure 9.27 provides more detailed information on the stagnation results. As
before, the heating results from the current method approach the stagnation line more
smoothly than those of either Ref. [29] or the VSL method.

The computed pressure distributions (Figure 9.28) are in excellent agreement
(within five percent) except near the sphere-cone juncture. This deviation is not
as large as that seen for the 5° cone, where the difference in shock- and body-angles
is greater. As mentioned earlier, Maslen’s relation works best when the difference
between these two angles is small, so the above improvement is expected. The skin
friction comparisons of Figure 9.29 show that the VSL and present method are again
in good agreement (generally within fifteen percent).
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Figure 9.26. Heat transfer comparison for 15° sphere-cone, Rnose = 1.1 in.
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Figure 9.27. Heat transfer comparison for 15° sphere-cone,
R,.. = 1.1 in (stagnation region).
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Figure 9.29. Skin friction comparison for 15° sphere-cone, R, = 1.1 in.
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The stagnation line results are very similar to those given in Figures 9.9 through
9.13, so they are not presented here. As before, profiles near the pressure minimum
(sp = 6) and at the end of the body (s) =~ 20) are presented. Figures 9.30 and 9.31
show the pressure profiles at these two stations. Figure 9.30 shows the results from
the two approximate techniques are similar and generally within five percent of the
VSL solution. The agreement is excellent between the approximate results, which
are virtually identical, and the VSL solution as the sharp cone limit is reached (Fig-
ure 9.31). At the pressure minimum region, the Maslen pressures are generally within
five to ten percent of the VSL results.

The velocity components normal to the body are shown in Figures 9.32 and 9.33.
The behavior noted for the 5° cone is present here, although the difference between
the results of Ref. [29] and the others is not as large as before. The body-tangential
velocity (Figures 9.31 and 9.35) and enthalpy profiles (Figure 9.36 and 9.37) also
follow the pattern set in the previous case.

The solution with a nose radius of /2,5, = 0.375 in and a body length of s, = 50
is now discussed. Because the nose radius is smaller than above, the bluntness effects
(which are visible for the length of the body above) are less pronounced at large
values of s, for this case. In the interest of brevity, the comparisons are limited to
surface properties. Figures 9.38 through 9.40 show that the heating rates, laminar
body pressures, and skin friction distributions follow the same trends cited above: the
results of the approximate approaches are in generally good agreement (within five
to ten percent) with the VSL solution. Further, the shock-layer profiles (not shown)
follow patterns similar to the solutions with R.... = 1.1 in.
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Figure 9.30. Pressure profile comparison for 15° sphere-cone,
Ruose = 1.1 in (s, ~ 6.5).
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Figure 9.31. Pressure profile comparison for 15° sphere-cone,
Ryose = 1.1 in (s = 20).
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Figure 9.34. Tangential velocity profile comparison for 15° sphere-cone,
Rose = 1.1 in (s = 6.5).
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Figure 9.35. Tangential velocity profile comparison for 15° sphere-cone,
Ruose = L1 in (s ~ 20).
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Figure 9.36. Enthalpy profile comparison for 15° sphere-cone,
Ryose = 1.1 in (s = 6.5).
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Figure 9.37. Enthalpy profile comparison for 15° sphere-cone,
Ruose = 1.1 in (sp = 20).

87



88

107!
F

1074

P SIS S WU

9. RESULTS AND DISCUSSION

p.. = 2.76 psf
T.=85°R
M. = 10.6
T, = 540 °R

10 20

Sp

Figure 9.38. Heat transfer comparison for 15° sphere-cone, R, s = 0.375 in.
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Figure 9.39. Body pressure comparison for 15° sphere-cone, R,o5 = 0.375 in.
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Figure 9.40. Skin friction comparison for 15° sphere-cone, Rpose = 0.375 in.

9.2 Equilibrium

Two sets of results for equilibrium flow are presented in this section. Both cases
are for fully-laminar flow. The discussion follows the format of the perfect gas section.

Case 1

As a first case, flow over a 5° sphere-cone (Rgo5 = 0.114 in) is calculated using the
the VSL [9] and present approaches. Both approaches use Hansen’s [35] equilibrium
air model. The freestream conditions are po, = 0.067917 psi and T, = 438°R, with
a variable wall temperature input. Fully-laminar solutions are calculated for a body
length of s, , = 1350. Heating comparisons are made with the Reentry F flight
experiment [72]. The VSL heating results are from Ref. [73].

Figure 9.41 shows the shock shapes from the two methods. The results are analo-
gous to those of the perfect gas, 5° cone solution discussed earlier, although the shock
layer is not as thick here. In Figure 9.42, the heating results of the VSL and present
method are in very good agreement with each other (within ten percent), although
they both underpredict the flight data.

The body pressure distributions are in excellent agreement (within five percent)
except in the pressure overexpansion /recompression region, as shown in Figure 9.43.
Figures 9.44 and 9.45 provide more detailed information on the stagnation region,
and show the results approach the stagnation line in a manner similar to the perfect
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Figure 9.41. Shock shape comparison for 5¢ sphere-cone, Ryo,. = 0.114 in.

gas case. The skin friction results of the two methods are presented in Figures 9.46
and 9.47. The two solutions are in good agreement, generally within ten percent.

The stagnation line results for p,v,i,k, and p are presented in Figures 9.48
through 9.52, respectively.  The two sets of results exhibit better agreement than
is seen for the perfect gas case. Profiles near the pressure minimum (s, &~ 50) and at
the end of the body (s, ~ 1350) are presented in Figures 9.53 and 9.54. The pres-
sure profiles are within ten to fifteen percent of each other at the pressure minimum,
while they are nearly indistinguishable (less than five percent apart) at the end of the
body. The body-normal velocity components at the pressure minimum (Figure 9.55)
are in agreement near the body, although further out in the layer there are noticeable
differences. At the end station (Figure 9.56), the agreement is excellent. In fact,
the present results are smoother than those of the VSL. The body-tangential veloc-
ity (Figures 9.57 and 9.58) and enthalpy profiles (Figures 9.59 and 9.60) agree quite
well (within approximately five percent of each other). Again note the oscillations
in the VSL results for the end station. These wiggles appear in the present solution
as well, and reflect a grid resolution problem at the boundary-layer edge. Since the
normal distribution for ecach method is based on physical distance, this problem can
be readily corrected by adjusting the spacing parameters (see Section 7.4).

Table 9.2 shows the overall run times required to generate this solution. The
value shown for the VSL results is the total time required for three shock iterations.
As with the perfect gas comparison, the approximate algorithm yields a dramatic
decrease in total CPU requirements over the VSI, technique. Further, the last entry
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Figure 9.42. lleat transfer comparison for 5° sphere-cone, Ryo5e = 0.114 in.
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Figure 9.43. Body pressure comparison for 5° sphere-cone, R, = 0.114 n.
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Figure 9.44. Heat transfer comparison for 5° sphere-cone,
Ruvse = 0.114 in (stagnation region).
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Figure 9.45. Body pressure comparison for 5° sphere-cone,
Ryose = 0.114 in (stagnation region).
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Figure 9.46. Skin friction comparison for 5° sphere-cone, Rpose = 0.114 in.
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Figure 9.47. Skin friction comparison for 5° sphere-cone,

Ryose = 0.114 in (stagnation region).
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Figure 9.48. Pressure profile comparison for 5° sphere-cone,
Rpuse = 0.114 in (stagnation line)

1.00 - p.. = 9.78 psf
T_=438 °R
[ V. =19786 fps
0.7s - T, variable
Mn
0.50 |
0.25
o‘oo " M a A 1 i i " " 1 " " A A 1 A a N i J
0.00 0.02 0.04 0.06 0.08
v
Figure 9.49.

Normal velocity profile comparison for 5° sphere-cone,
Ryose = 0.114 in (stagnation line).
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. Enthalpy profile comparison for 5° sphere-cone,

R,0se = 0.114 in (stagnation line).
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Figure 9.52. Density profile comparison for 5° sphere-cone,
Ruose = 0.114 in (stagnation line).

in the table illustrates that solving the approximate VSL equations for equilibrium
flow is inherently about sixty percent faster than solving the full VSL equations.
This speed-up is not as large as the perfect gas value, which can be attributed to
the complexity of the equilibrium air model relative to the perfect gas relations.
This is because a large percentage of the total run time is dedicated to determining
thermodynamic and transport properties, which are the same in both methods, so
that the benefits of using the time-saving approximate equations are reduced.
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Figure 9.53. Pressure profile comparison for 5° sphere-cone,
Roose = 0.114 in (s, = 50).
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Figure 9.54. Pressure profile comparison for 5° sphere-cone,
Rose = 0.114 in (s, = 1350).
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Figure 9.55. Normal velocity profile comparison for 5° sphere-cone,
Ruose = 0.114 in (s ~ 50).
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Figure 9.56. Normal velocity profile comparison for 5° sphere-cone,
Riose = 0.114 in (s, = 1350).
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Figure 9.57. Tangential velocity profile comparison for 5° sphere-cone,
Roose = 0.114 in (s = 50).
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Figure 9.58. Tangential velocily profile comparison for 5° sphere-cone,
Roose = 0.114 in (s, = 1350).
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Figure 9.59. Enthalpy profile comparison for 5° sphere-cone,
Roose = 0.114 in (s, = 50).
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Figure 9.60. Enthalpy profile comparison for 5° sphere-cone,
Ryose = 0.114 in (s, &~ 1350).
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Table 9.2. Run-times® for 5° cone, Russe = 0.114 in.
H VSL PresentJJ

stations 667 206
CPU time 4539 714
grid pts/sec 15 29

shock iterations 3.0 2.5
grid pts/sec/shock || 49 72

a — Sun Sparcstation 1+

Case 2

As a second case, comparisons between the VSL [9] and current method are made
for Mach 22 flow over a 35.5° hyperboloid. The nose radius is Rnpose = 3.46457 ft
and the fully-laminar solution is computed for a body length of sp,, = 24.5. The
freestream conditions are po, = 0.00094 psi and To = 400° R, with a wall temperature
of T, = 1998°R.

Figure 9.61 shows that the shock shapes from the two methods lie virtually atop
one another. In Figure 9.62, the heating rate compariséns are very good ( within five
to ten percent) for the entire length of the body. Likewise, the computed pressure
distributions (Figure 9.63) are in excellent agreement (within two to five percent)
everywhere. Referring to Figure 9.61, these excellent results can be attributed to the
fact that with the large body angle, the shock- and body-angles are nearly equal for
the entire length of the body (which more closely matches Maslen’s assumptions).
The skin friction comparisons of Figure 9.64 show that the VSL and present method
are again in good agreement (generally within ten percent).

Since the stagnation line results are similar to those given in Figures 9.48 through
9.52, and the agreement between the solutions of the two methods is still excellent,
they are not presented here. Again, profiles near the pressure minimum (s, = 15.5)
and at the end of the body (s; = 25.5) are presented. Figures 9.65 and 9.66 show
that the pressure profiles at these two stations are nearly indistinguishable (less than
five percent apart). The only major differences in the body-normal velocity compo-
nents (Figures 9.67 and 9.68) are near the shock, and thus have minimal impact on
the surface properties. Further, the body-tangential velocity profiles (Figures 9.69
and 9.70) and enthalpy profiles (Figures 9.71 and 9.72) are within approximately five

percent of each other.
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Figure 9.61. Shock shape comparison for 35.5° hyperboloid, R,.se = 3.46457 ft.
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Figure 9.62. Heat transfer comparison for 35.5° hyperboloid, R,... = 3.46457 ft.
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Figure 9.63. Body pressure comparison for 35.5° hyperboloid, Ruose = 3.46457 ft.
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Figure 9.64. Skin [riction comparison for 35.5° hyperboloid, Rnose = 3.46457 ft.
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Figure 9.65. Pressure profile comparison for 35.5° hyperboloid,
Rugse = 346457 ft (55 = 15.5).
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Figure 9.66. Pressure profile comparison for 35.5° hyperboloid,
Rpose = 3.46457 ft (s = 24.5).
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Figure 9.67. Normal velocity profile comparison for 35.5° hyperboloid,
Ro.,. = 3.46457 ft (s, ~ 15.5).
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Figure 9.68. Normal velocity profile comparison for 35.5° hyperboloid,
Ruose = 3.46457 ft (35 = 24.5).
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Figure 9.69. Tangential velocity profile comparison for 35.5° hyperboloid,
Ruose = 3.46457 ft (s =~ 15.5).

1.00 [ p.=0.14 psf !
T” -

= 400 °R
| M_=22.14
075 T, = 1998 °R

In

0.50 |

0.25 | ——— Present

ooo N e s —etes vomenrwot) NPT VU SO S S G |

0.00 0.25 0.50 0.75 1.00
u

Figure 9.70. Tangential velocity profile comparison for 35.5° hyperboloid,
Ryose = 3.46457 ft (sp =~ 24.5).



9.2, BQUILIBRIUM

1.00

p. = 0.14 psf
T, =400 °R
- M_=22.14
0.75 b Tw=1998 °R
Mn
0.50 |
S ittt VSL
0.25
| Present
0.00 " N & " A " e aaaad
1072 10" 10°

h

Figure 9.71. Eunthalpy profile comparison for 35.5° hyperboloid,
Ry = 346457 I (sy ~ 15.5).
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Figure 9.72. Fnthalpy profile comparison for 35.5° hyperboloid,
Ry = 3AGABT ft (84 2 24.5).

107



108 Y. RESULTS AND DISCUSSION

25
2.0
r 45l
1.0 [
P.. = 1.14 psf
. T_ = 486 °R
0.5} M_ =25
T, = 2260 °R
o-o " 1 - 1 1 1 ]
0 1 2 3 4 5

Figure 9.73. Shock shape comparison for 6 sphere-cone, R, = 1.5 in.

9.3 Nonequilibrium

Three sets of results for nonequilibrium flow are presented in this section. The
first is flow over a 5° sphere-cone with a noncatalytic wall. The next case is a longer
20° cone, where two solutions are computed: noncatalytic wall and fully-catalytic
wall. The VSL [14] and current method are employed for this analysis. The discussion
follows the format of the previous sections, although additional profile comparisons are
made. As a final case, the present method is used to calculate flow over a hyperboloid
with both noncatalytic and fully-catalytic wall conditions. The results for this case
are compared with Shuttle flight data.

Case 1

As the first case, comparisons between the VSL [14] and current method are made
for Mach 25 flow over a 6° sphere-cone. The nosc radius is Ruose = 1.5 in and the
solution is computed for a body length of s, = 5. The freestream conditions
are po, = 0.00794 psi and T, = 486°R, with a wall temperature of 7, = 2260°R.
Nonequilibrium flowfield calculations require additional boundary conditions for the
species mass fractions, and a noncatalytic wall boundary condition (see Section 5.5.1)
is specified here. The VSL heating results are from Ref. [70].

Figure 9.73 shows the shock shapes from the two methods. As with the perfect
gas and equilibrium results, the computed shock shapes begin to deviate from one
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another in the overexpansion region. Figures 9.74 and 9.75 show that the surface
heating results are within fifteen percent of cach other and approach the stagnation
value quite smoothly. The pressure expansion is still underway at the end of this body,
and Figure 9.76 clearly shows the differences between the VSL and present body pres-
sures. Note that the pressures are approaching each other as the solution progresses.
Figure 9.77 displays the same smooth beliavior scen previously for stagnation region
pressure distributions. The skin friction results of the two methods are presented in
Figures 9.78 and 9.79. The two solutions are in good agreement (generally within ten
percent).

The stagnation line results for p,v,u,T, and p are presented in Figures 9.80
through 9.84, respectively. The pressure predictions (Figure 9.80) are within approx-
imately one percent of cach other, while the normal velocity profiles (Figure 9.81)
agree to within five percent. The tangential velocity profiles (Figure 9.82) are not
as close, but as explained earlier, this may be due to differences in the streamwise
momentum equation on the stagnation line. Agreement between the temperature,
as well as density, profiles (Figures 9.83 and 9.84) is excellent. The species mass
fraction profiles are presented in Figure 9.85. Note that for this figure, the dependent
variables are assigned to the vertical axis, rather than to the horizontal axis as is done
for the other profiles. Again the agreement between the two methods is very good.
Only trace amounts of NO? are present for this case, so its inass fraction profile is
not included in the figure.

Since the flow solution does not encompass the pressure minimum (see Figure 9.76),
only profiles at the end of the body (s, = 5) are presented. Figure 9.86 shows that
the pressure profiles differ by twenty percent of each other at the end of the body.
The body-normal velocity components (Figure 9.87) are in good agreement through-
out the shock layer at this station. Notice {hat this velocity component is negative
at this station, which is indicative of the streamlines spreading away from the body
surface (see Figure 7.1). Although this behavior has not been shown previously, the
same situation exists in this region for perfect gas and equilibrium flows about slen-
der cones. The body-tangential velocity (Figure 9.88) profiles are in agreement near
the body and shock, but deviate from one another (by as much as ten percent) in
the interior of the shock layer. On the other hand, the temperature (Figure 9.89)
and mass fraction profiles (Figure 9.90) agree quite well (within approximately five
percent of each other).

As a final comparison for this case, the electron density is considered. Figure 9.91
displays the profiles for the stagnation line and the end station. Note the good
agreement between the solutions. As the sharp-cone limit is reached, the normal
spacing for the two methods are virtually identical. Thus, the oscillations near the
shock for the end station (which are present in both solutions) are possibly due to
grid resolution. Since they occur far away from the body, they have little effect on

the surface properties.
Table 9.3 shows the overall run times required to generate this solution. The value
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Figure 9.74. Heat transfer comparison for 6° sphere-cone, Rpos = 1.5 in.
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Figure 9.75. Heat transfer comparison for 6° sphere-cone,
Rpose = 1.5 in (stagnation region).
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Figure 9.77. Body pressure comparison for 6° sphere-cone,
Roose = 1.5 in (stagnation region).
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Figure 9.78. Skin friction comparison for 6° sphere-cone, R, . = 1.5 in.
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Figure 9.79. Skin friction comparison for 6° sphere-cone,
Ryose = 1.5 in (stagnation region).
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Figure 9.80. Pressure profile comparison for 6° sphere-cone,
Rpose = 1.5 in (stagnation line).
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Figure 9.81. Normal velocity profile comparison for 6° sphere-cone,
Rpose = 1.5 in (stagnation line).
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Figure 9.82. Tangential velocity profile comparison for 6° sphere-cone,
Ryose = 1.5 in (stagnation line).
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Figure 9.83. Temperature profile comparison for 6° sphere-cone,
Riosc = 1.5 in (stagnation line).
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Figure 9.84. Density profile comparison for 6° sphere-cone,
Roose = 1.5 in (stagnation line).

P.. = 1.14 psf N2
T_=486°R

M.=25 7 VSL

0.6l Tw=2260°R

04

0.2

0.0 . = .
0.00 0.25 0.50 0.75 1.00

Mn

Figure 9.85. Mass fraction profile comparison for 6° sphere-cone,
Ryose = 1.5 in (stagnation line).
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Figure 9.86. Pressure profile comparison for 6° sphere-cone,
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Figure 9.87. Normal velocity profile comparison for 6° sphere-cone,
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Figure 9.88. Tangential velocity profile comparison for 6° sphere-cone,
Rpse = 1.5 in (s, = 5).
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Figure 9.89. Temperature profile comparison for 6° sphere-cone,
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Figure 9.90. Mass fraction profile comparison for 6° sphere-cone,
Rpose = 1.5 in (s, = 5).
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Figure 9.91. Comparison of electron concentration profiles for 6° sphere-cone,
Rpose = 1.5 in.
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Table 9.3. Run-times® for 67 cone, Rpse = 1.5 10,

[r ll VSL l PresentJ
stations 46 38
CPU time 759 273
grid pts/sec 3 7
shock iterations 3.0 4.2
grid pts/sec/shock || 9 30

a - Sun Sparcstation 1+

shown for the VSL results is the total time required for three shock iterations. As with
the perfect gas comparison, the approximate algorithm yields a dramatic decrease in
total CPU requirements relative to the VSL technique. Further, the last entry in the
table shows that the the present method can process approximately three times as
many grid points per second (for a given shock shape) as the VSL technique.
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Figure 9.92. Shock shape comparison for 20° sphere-cone, Ry, = 1.5 in.

Case 2

As a second case, calculations are performed for the Mach 25 flow over a 20°
sphere-cone (R,05. = 1.5 in) with the same freestream conditions as the previous case.
Comparisons between the VSL [14] and current method are made for a body length of
b4 = 290. The freestream conditions are p., = 0.00794 psiand T, = 486°R, with
a wall temperature of T,, = 2260°R. Solutions are generated for both a noncatalytic
and fully-catalytic wall condition (see Section 5.5.1).

Figure 9.92 shows that the shock shapes from the two methods are indistinguish-
able, once the flow has reached sharp cone conditions. Figure 9.93 shows that with
this larger cone angle, the difference between the shock shapes is still very small in
the overexpansion region. From Figures 9.94 and 9.95, the approximate and VSL
surface heating results are generally within five percent of each other for both wall
conditions and approach the stagnation value quite smoothly. Note that in the nose
region the effects of wall catalysis are large (more than fifty percent), while further
downstream this difference diminishes (to approximately twenty percent). The results
of the present method do appear to satisfy dq,,/ds, = 0 at the stagnation line more
closely than the VSL approach. The catalytic boundary condition has little effect on
the pressure, so only the fully-catalytic results for the body pressure distribution are
presented in Figure 9.96. In this figure, the values from the two methods are nearly
identical for s, > 20. At the pressure minimum, the difference between results is
approximately twenty percent. The behavior of the pressure in the stagnation region
is identical to that of the previous case (Figurc 9.77). The skin friction results of the
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Figure 9.93. Shock shape comparison for 20° sphere-cone,
Rpose = 1.5 10 (overexpansion region).

two methods for both catalytic conditions are presented in Figure 9.97. The two so-
lutions are in good agreement for both wall conditions (generally within five percent),
and show only a ten percent difference due to the wall catalysis.

Gince the freestream conditions are the samc as the previous case, and the geome-
try is still spherically-capped, the noncatalytic wall profiles for the stagnation line are
identical to Figures 9.80 through 9.85. For the fully-catalytic wall solution, the pro-
files of p,v, and © are nearly indiscernible from those of, Figures 9.80 through 9.82, so
they are not shown here. The temperature and mass fractions (Figures 9.98 and 9.99)

are visibly different from their noncatalytic-wall counterparts, although agreement

between the two methods is still within five to ten percent. The mass fraction profile
of NO* is not included in Figure 9.99, since only trace amounts are present for this
case.

Again, profiles near the pressure minimum (s, ~ 3) and at the end of the body
(sy ~ 250) are presented. Because the pressure and velocity profiles are not greatly
affected by the wall catalytic condition, only the fully-catalytic wall results for the
profiles of p,v, and @ are presented. Figures 9.100 and 9.101 show that at the pressure
minimum the pressure profiles are within ten to fifteen percent of each other while at
the end station, the profiles are nearly indistinguishable. At the pressure minimum,
the body-normal velocity components differ by twenty percent (Figure 9.102). Fig-
ure 9.103 shows these components to be in excellent agreement (within five percent)



122 9. RESULTS AND DISCUSSION

107 ¢
N e VSL P.. =-1.14 psf
M_ =25
T, =2260 °R
102}
Qw "
u fully catalytic
10° _ —
noncatalytic T
10'4....1.4..1.A,.1.L.Jl.l,.l
0 50 100 150 200 250
Sp

Figure 9.94. Heat transfer comparison for 20° sphere-cone, Ry = 1.5 in.
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Figure 9.95. Heat transfer comparison for 20° sphere-cone,
Rpose = 1.5 in (stagnation region).
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Figure 9.96. Body pressure comparison for 20° sphere-cone, Ruose = 1.5 10,

10" ¢
[ —meme- VSL p. = 1.14 psf
Present T, =486 °R
M_=25
T, = 2260 °R

C; 102
L fully catalytic

noncatalytic

POV U Y S . |

-‘0'3 U U W AN DU ST S S | Lo b
0 50 100 150 200 250

Sp

Figure 9.97. Skin friction comparison for 20° sphere-cone, R.ose = 1.5 10,
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Table 9.4. Run-times* for 20° cone, Rpose = 1.5 in.

ﬂ Il VSL I Present ”
stations o987 157
CPU time 7961 525
grid pts/sec 4 15

shock iterations 3.0 2.1
grid pts/sec/shock || 11 33

a — Sun Sparcstation 1+

at the end station. The body-tangential velocity profiles at the pressure minimum
(Figure 9.104) are in agreement near the body and shock, but deviate from one an-
other in the interior of the shock layer. Figure 9.105 shows that at the end station
these profiles are virtually identical. Temperature profiles at the two stations given
above are shown in Figures 9.106 and 9.107 for the noncatalytic wall, and in Fig-
ures 9.108 and 9.109 for the fully-catalytic wall. At the pressure minimum, both
sets of profiles are within approximately five percent of one another. The profiles at
the end of the body are practically identical.

Mass fraction profiles at these two stations are shown in Figures 9.110 and 9.111
for the noncatalytic wall, and in Figures 9.112 and 9.113 for the fully-catalytic wall.
At the pressure minimum, both sets of profiles are within approximately five percent
of one another. Differences in the profiles at the end of the body are indistinguishable,
with the chemistry effects concentrated in the near-wall region. Only trace amounts
of NO* are present, so those profiles are excluded from The figures.

As a final comparison for this case, the electron density profiles for the three
stations discussed above are considered. Figure 9.114 and 9.115 show generally good
agreement between the methods for the noncatalytic and fully-catalytic wall solutions,
respectively. The wiggles in the end station profiles at the boundary-layer edge are
probably due to poor grid resolution there.

Table 9.4 shows the overall run times required to generate this solution. The value
shown for the VSL results is the total time required for three shock iterations. Trends
from the previous case are observed again here.
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Figure 9.102. Normal velocity profile comparison for 20° sphere-cone,
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Figure 9.103. Normal velocity profile comparison for 20° sphere-cone,
Rouse = 1.5 in (sp = 250).
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Figure 9.104. Tangential velocity profile comparison for 20° sphere-cone,
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Figure 9.105. Tangential velocity profile comparison for 20° sphere-cone,
Roose = 1.5 in (s, = 250).
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Figure 9.109. Temperature profile comparison for 20° sphere-cone,
Ryose = 1.5 in (s, = 250).



9.3. NONEQUILIBRIUM

08 —meme- vsL
N2
0.6 p_ = 1.14 psf
c T_ =486 °R
| M_=25
0.4 I T, = 2260 °R
- noncatalytic
L N
0210
o.o N i urts -
0.00 0.25 0.50 0.75 1.00

M

Figure 9.110. Mass fraction profile comparison for 20° sphere-cone,
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Figure 9.113. Mass fraction profile comparison for 20° sphere-cone,
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Figure 9.116. Heat transfer calculations for 42.75° hyperboloid, R,.. = 4.489 ft.

Case 3

In the past, hyperboloids have been used to model the windward symmetry plane
of the Shuttle at angle of attack (see Rel. [74], for example). As a final case, the present
method is used to calculate the Mach 15.7 flow over a 42.75° hyperboloid, which
approximates the windward symmetry plane of the Shuttle at an angle of attack of
42°. The nose radius is R,,,. = 4.489 ft and the solution is combuted for a body length
of sp,., = 25. The freestream conditions for an altitude of 60.56 km are Do = 0.00276
pstand Ty, = 455°R, with a variable wall temperature input. Solutions are calculated
for noncatalytic and fully-catalytic wall conditions. Figure 9.116 compares the two
heating rate distributions with Shuttle windward centerline measurements from STS-
2 {31]. As expected these two calculations bracket the measured values. Note that
the flight data is closest to the fully-catalytic result. Results presented in Ref. [74]
also show the flight data falls closer to the fully-catalytic solution. Those results are
for a hyperboloid geometry as well, and the solution is calculated from VSL method

of Ref. [8].
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10 Conclusions

A new approximate VSL approach to solving hypersonic flowfields about axisym-
metric blunt bodies has been developed. The method is applied to sphere-cones and
hyperboloids, over a freestream Mach nwmber range of 10 to 25. The shock layer
profiles, when compared to VSL solutions, are seen to be smooth and accurate for
perfect gas and reacting flows. This is an improvement over the results of Grantz [27],
and can be at least partially attributed to differences in the transformation variable
for the normal direction.

Using Maslen’s pressure relation in licu of numerically integrating the normal mo-
mentum equation is shown to give accurate pressure profiles outside of the pressure
overexpansion/recompression region. As a result, predicted body pressures are gen-
erally within five percent of the VSL values. Not surprisingly, computing the normal
component of velocity from the continuity equation, instead of using the approximate
relation of Ref. [29], is shown to yield profiles which are more consistent with a full
VSL solution. Because this component is small relative to the tangential velocity,
the impact of the approximate normal velocity expression on the tangential velocity
profiles is minimal except in the near-wall region.

Turning to heat transfer calculations for perfect gas flows, excellent agreement
between the VSL and approximate approaches is seen in the nose region. Within the
pressure overexpansion/recompression region, the Grantz [29] and present methods
yield comparable results which deviate from the VSL solution. Further downstream,
as the sharp-cone limit is approached, the present technique shows good agreement
with the VSL solution, while the results of Ref. [29] are higher. This deviation appears
to be due to the normal velocity inaccuracies (mentioned above) having an effect on
the near-wall enthalpy profiles. For reacting flows, both equilibrium and nonequi-
librium, results from the present approach consistently exhibit good agreement with
VSL solutions. The Reynolds analogy relates the heating rate to the skin friction,
so it is not surprising to see that the skin friction results from the present and VSL
approaches are in good agreement in those regions where the heating results agree
well. '

In the present method, a limiting form of the governing equations can be obtained
for use on the stagnation line. A different approach is used in Ref. [29], with only
limited success. As a direct result of the formulation used here, the surface properties
calculated with the present method approach their stagnation values more smoothly
than those of Ref. [29] or the VSL solution.

Run time comparisons between the present and VSL [9, 14] approaches for perfect
gas and reacting flows show typically an order of magnitude reduction in overall
CPU requirements. Further analysis shows that for a given shock shape and time
interval, the present technique can process iwo to three times more grid points than
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the VSL algorithm. Based on the accuracy of the computed surface properties, this
new approach could be uscful in the preliminary design environment. Alternately,
it could be used to generate an initial shock shape for more exact methods which

require starting solutions.
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11 Recommendations

For this new approach to be most useful in the design environment, its extension to
three-dimensional flows is required. The approximate approach of Ref. [29] does not
provide the desired accuracy, so the transverse momentum equation (or an approxi-
mate form of it) probably would need to be included in the governing equation set.
In addition, certain facets of the ongoing research by Riley and DeJarnette [69] con-
cerning the inviscid solution of three-dimensional flows might be extended to viscous
flows.

Run-time comparisons show the present technique is significantly faster than the
VSL approach. However, especially for nonequilibrium flows, it is unclear whether this
is due primarily to Maslen’s approximate relation or to other techniques developed
herein to increase computational efficiency. It would be interesting to see if the run
time would be increased by a large amount with the normal momentum equation
included. In this scenario, the full VSL equations would be solved in a shock-normal
system.

The present method employs a marching procedure without global iterations in
the region where the outer portion of the shock layer is supersonic. As a result,
the physically correct phenomenon of information propagating upstream through the
subsonic portion of the boundary layer is neglected. With the VSL approach, global
passes followed by shock-shape smoothing allow information to propagate upstream.
An investigation into the effect of this omission in the current approach is warranted.

Currently, calculations cannot be made for very blunt bodies (greater than ap-
proximately 45°). This limitation prevents the calculation of flowfields over many
ASTV-type vehicles. The shock shape equation for the subsonic-transonic region
would require modification before such computations could be performed.

As a final comment, a more sophisticated procedure for determining the stream-
wise step size in the marching region would yield significant improvements in overall
computational requirements. Such improvements would be most noticeable in the
pressure overexpansion/recompression region.
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A Reference Quantities

The governing equations are nondimensionalized according to the following rela-

tions:
s*
8 =
R;.DJC
z*
7 =
R:O.’C
u*
U = —
Ve
pP= r
p:ef
q*
q =
q:cf
. R
R = o
Poo
*
T=E
Tref

The reference quantities are

prej = poo V*Z
v*?
T (v ]
rcf *
O
qref - poo V*S
Vi
* ref
Tt = R

nose

*
and pi7,

h

w;

7

R*

nose
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nose
v

V*
h*

h :r]

L%
ref

is the coefficient of viscosity evaluated at 17

hg"

Ks

=
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h*
R*

nose

: Poo

Wt = R
* #:c f
ref = R

In addltlon, the following dimensionless parameters appear in the equatlons
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_puR,
Re = T—
[ Gy 2
Lepy = MR i
k*
62 . /lrc]

VAR,

noese

Units for the dimensional quantities used above are

. _ [
R:o.sc = [ﬁ] Voo = ;
. [ 1 . rfl2
prcf: ]:t_z rcf= ?
. _ |BTU o [ BTU
Tref = | ft?-s ref | ft-s-°R
. [ 1b . slug
Tref = fﬁ] Weep = (ft_":]
cr = [ BTU
“pov T | slug-°R

A REFERENCE QUANTITIES

;t*C*
Pr="—"2
r k*
Loy = PP
k*

. slug
Poo = Fg,—
. _ |slug
ﬂrcf - [ft-S]

Tr*ef = [OR]

. slug
ref = ﬁ2_s
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B Fluid Equations

The development of the Navier-Stokes cquations can be found in a variety of
sources within the literature, so in the interest of brevity, this derivation is not re-
peated here. In particular, Ref. [75] presents the Navier-Stokes equations written in
an orthogonal curvilinear coordinate system. Restricting ourselves to axisymmetric
flow, these equations are written below in dimensional form.
continutly:

i(*"l"—k-a—(*'*hh* =0 B.1
9 (k) + g (0 ) = (B.1)

[y

s* - momenlum:

. (u* ou*  ,Out  uwvt Bhl) 1 Op*
p -9 _

e Vo T onr) Thids T
1 9rx, 0Tk, | Tay — Tis OR5 2 0hy 1 Oh3\ .
hy ds* ~ On* hyhy  Os* hy On*  h%On* Ton (B.2)
n* - momentum. 5 ) 2 oh ;
furde Ou uw? O 0P
p (hl 83* + (% 8“* h] an*> + an* - (B3)

-);1_ 0s* on*  h k% 0s*

energy:

1 972, | O
+

r Oh5 | (1Oh 1 ORE) . TheORS i Om
hiOn* | h3Onc) ™ hyon* M on*

. [u* Ok L Oh* u* Op* LOp*
P (_h_l Js* tv f)n*)

1 0 [ hypt Ok 0 pu~ Oh* T | o dhy
— | 2= — | hhy =5 2 — 4" .
hih% [33* (hl Pr ()3*) + on* ( 1Dy O~ + hy | Os* T on* (B.4)
mr [ove L, 0h A e Ky ohy  ,O0h3
+ [83* - 8n*] hy 0s* T on*

by Ton g T G0 kY

stress terms:

1 ou* *oh 2 u 0 J
* =2u*[ U +U l} _5 1 - [‘——;(h;u*)-i'g’;(hlh;v*)}

a8 K -a_;_; ;l: an*

o 2 p |0 0
* = 2 — — = hiu*) + — (hih5v* B.5
Tan H an* 3h1h§ [ U )+ n*( 13V )] ( )

vt ok w Ohf) 2 | O d
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e = {hg o i hyhy 35*] 3 hyh3 83*( ) + Bn*( 1h3v")
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T i?ﬁ.*_h _0_ (E_*.)
Ton = # hl 63* lan* h1

Using the definitions of Appendix A, Egs. (B.1) through (B.5) are rewritten below
in nondimensional form.
continuity:

d J

s - momentum:

i(‘_?}f_'_ 8'u+ztvc7/11 i_@g_
h] 8.5 () hl an hl 85 B
1 01,y 0Ty | Tos — Tpy Ohy 2 Oh, 1 Ohs
{hl 9s T on T Thiky o5 (hl on t s on )T} (BT)

n - momentum: )

(u ov dv  u?oh, Jdp

h_15; + Uan h, dn an (B.8)
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By assuming thal v aud n are of the order of ¢ and neglecting terms of higher order
than ¢, the standard viscous shock-layer cquations are obtained:
conlinuity:

d d
5; (puhg) + O—T; (pvh1h3) =0 (Bll)
s - momentum: _
) ( u Ou du  uv 8/11) 10p

5ds Van Thon)  hos

3 (‘?u u 3h1 2 dh] 1 8h3 ()u U 8h1
Aol (i) o e nm) & i)} e
n - momentum: o« o do u? ok, op
p(_I;,—l_—B_s.Fv%—-h_lﬁ;—l—) +5;=0 (B.13)
energy:
u Oh oh u Jp Jp
”(Ta'+d—> “hmos Von

o] 9 |k Ok w Oh (1 0k 1 Ohs
2 O [ pOh)  pon [l
‘ {an [Pran] * Pon (h] on * ha 071) (B.14)

e (p, 0O 10u  udh
FA"M3n " %on ) \hion k% an

Note: In order to keep the equations parabolic in nature, the right-hand
side of the n-momentum equation is only of order 1.
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C Maslen’s Method

Maslen’s pressure relation is an approximate solution to the normal momentum
equation. Briefly, some terms are observed to be negligible in certain regions, while
others are assumed to deviate little from their shock values. The resulting closed-form
expression for p is a function of shock properties and stream function. The details of
this derivation are given below, since some of the intermediate results are used in the

present method.
Recall from the continuity equation, Eq. (B.11), that

7] 0
— (puhs) + = (pvh1h3) =0

0s on
This expression is satisfied by the stream function ¥, where
ov ov
Os = pvh1h3 —67’1,— = —puh3
Maslen works in a(£,7) coordinate system, where
\
E=s "= (C.1)
The chain rule of differentiation gives
g 060 dnd o oto dna
ds  0s Ot + ds On on  On ot + n dn (C2)
From Eq. (C.1)
86—] @__]__O_llig_vy_d\ll,
Js Js W, 0s W, ds
% _, on _ 1 0¥
on on U, 0n
For axisymmetric flow,
2
v, = Ts dv, =r,sinl,
2 ds
Hhs d 9, md ) hs D
j ] pung
g_<2 9 — = — — C3
ds  Of + 0s dy dn ¥, Oy (C.3)
where o

k] % [pvhihs — nrysinT,) (C4)
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From Eq. (B.13), the normal momentum equation is
u Ov dv  u’oh Jdp
P(m;”%—m:{) T 0 = (C5)
Applying the transformations of Eq. (C.3) to Eq. (C.5), substituting
dhy

—— = —K
an ¢

and rearranging gives the normal momentum equation in this coordinate system:

dp 1 v v
—_— = \Ils —_— ‘S — T 3 s .
an hxha{ [0 +un] rensin [’ 377} (C.6)
Apply Eq. (C.3) to n to get
u On  nrysinl’y on v,
v=pr b —=—— C.7
h] af ﬂh1h3 a'f] puha ( )
Using the approximation
an
n=—|(n-1)
along with Eq. (C.7) gives
1‘3
n — ] —
"= o, (1-n)
Differentiate with respect to £ to get
on 1-—1q Vs KsTs n dp,
on _ 17y P o - — .
1913 2 {cos I, [ cos I‘,] ps d€ } (C8)
Maslen neglects the last term in this expression to get
an  (1—1n) wvs KsTs
- = I b .. i
o€ 2  cosl [ COS I‘s] _ (C.9)

By substituting this expression into Eq. (C.7) and evaluating the remaining dependent
variables at the shock, the following relation for v is obtained

v = v + [1 PLLE ] (n—1) (C.10)

3
2 cos Iy

Differentiate with respect to 7 to get
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Substitute this expression into Eq. (C.6) and evaluate the remaining dependent vari-
ables at the shock so that

dp  kerou, wvysinl, [ KyTs
LAY - 1 C.11

dn 2 2 * cos I’,] " ( )
where the partial derivative of v with respect to ¢ has been neglected. Integrate this
expression to get Maslen’s second-order pressure equation:

2
n°—1
&) =ps + pan(n—1) + PM2( 5 ) (C.12)
where )
KsTgily
PM1 = 5
and _
___v,smI‘_,[ n,,r,]
Pmz = 2 cos T,

This result is essentially a truncated Taylor’s series expansion of p about its shock
value:

Il

p(€,n) po(€) + p(&)[n—1] + pz(f)[" ;!1] (C.13)

where
Po = Ps P1 = pMmi + puae P2 = PMm2
The streamwise derivative of p along lines of constant 7. appears in the governing
equations. Differentiating Eq. (C.12) with respect to ¢ gives an expression for the
streamwise derivative along lines of constant 7:

dp dp, + n—1 dr, 4 dr + du,
s = sKeg—— sTs 5+ sTs—
96~ de T2 \MMde T g TRy
7 -1 _ Ts d~,+ K @i_ r, dcosl,
4 vaSHLLs cos'y d6 ~ cosI'y \ df cosT, d¢
KT . dvg o dsinT,
+ [l +— Fs] [bm I, T + Us_c—iﬁ——}} (C.14)
Recall that
du, ) .
% =sinT, dzé = Kkysin [ 52 (sinTy) = —k,cosT, |
Make these substitutions to obtain
— d R ]
-g_é_) n = %72_3 + U] . 1 {us[g_, sin'y + usrs—d%- + &%r,sin I",}
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2 _ -
_n-l {vs sinl, [-rsal—'—gi + kysin [y (1 S n,)}

4 cos ', d¢ cos [,
sTs . 1 s

Eq. (C.15) is the partial derivative of p along lines of constant n. However, the desired
quantity is the partial derivative of p along lines of constant 7y. Recall from Eq. (C.3)

that

op _ dp|  Onop Op _ _puhsOp
ds Ot , U8 on im0, Oy
and from Eq. (2.1.7)
op _ dp| _mm—1dm Op o _ _10p
ds O " ny, df Onn In~ npOn

Equate these expressions to get

o _oo| 0n0p m=tim o . _ pubans
0¢ nn_— a€|, ds dn ny d€ Ong O ¥, On

It turns out that the expression for dn/ds, Eq. (C.4), is not well-behaved near the
stagnation line. By making use of Eq. (C.7), this expression may be rewritten as

On _ puha On (C.16)

9s W, Ot

where dn /¢ is defined in Eq. (C.9). Equation Eq. (C.16) is well-behaved near the

stagnation line so this form is used everywhere.
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D Shock Layer Thickness

With each iteration in the solution of the governing equations, a calculated value
of the shock layer thickness, n,, may be determined from the continuity equation. As
explained in Chapters 7 and 8, this thickness is compared with the geometric thickness
given by the shock and body equations. When these two values are in agreement,
the solution is advanced to the next station. This appendix provides the expression
for determining this calculated shock layer thickness. Inherently, this expression also
provides the relationship between 5 and 7,,.

The continuity equation, Eq. (2.1.10), can be rewritten as

8 . dnb 6 o 0 - _
B¢ (nopspusiihs) — Pt e G [(7m = 1) phs] — p, ann (pvhihs) =0 (D.1)

Integrate across the shock layer to obtain

dn
(pspvhahs), = (pspvhahs), + patts—=2 {[(1a — 1) piks], — (7 — 1) pitha], }

d¢
' 9 hs)d D
= vy s_ 34 d n 2
) B (nepspustihy) dy (D.2)
Recall that
oy = sin[’, vy = iy = 0 hy, =1 hs, =74
Ps

Make these substitutions into Eq. (D.2) to get

1
b% [nbp,u,/o ﬁﬁhgd‘l[n} = r,sin [; (D.3)
Integrate with respect to ¢ to obtain

1 € e d¢
nbp,u,/ puhady, = / rysin [',dé :/ rysin ['y——dr, (D.4)

0 0 0 dr,

i
ince ar, ] 03
& sin [y .

this can be rewritten as

1 Ts
nbp,u,/ puhsdy, = / rydro = = =V, (D.6)
0 0
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Substitute for hs to get
1 1
nbp,usn/U pitdn,, + NpPsUsny COS FS/ pii(n, —1)dn, = v, (D.7)
0

This yields the following quadratic for ny, the normal distance from the shock to the
body:

1 1
n [p,us cos F,/O pii(nn — 1) dn"] + ny [psusrsfo ﬁﬁdnn] -¥,=0 (D.8)

An alternate approach for calculating the shock-layer thickness is given below.
For a given station (where s is a constant), utilizing Eq. (C.3) gives

dn On _ _puh3

dn  On v,
Similarly, Eq. (2.1.7) shows that along a given shock-normal line

dnp Oy I dn ___l__d_n_

dn On —E Oy, T mpdn
Equate these relations to get

d
\Psa—n— = puhyny = psPUsthans

n

Integrate to obtain
n n
\IJ,/ dn = psusny puhadnn
0 0

Substitute for hs to get
2 2 In Nn
W,y =14 [PaU,/ pu (nn — l)dnn] + 1 [Pauars ﬁﬁdﬂn] (D.9)
o 0
At the shock, n = 1 and , =1 so that
1 1
U, =n; [psufj pit (N — 1) dnn] + [psusrs/ ﬁﬁdnn] (D.10)
0 0

which is equivalent to Eq. (D.8). Eq. (D.9) defines the relationship between 7 and
a. As a result, it must be used in conjunction with Maslen’s pressure equation in

order to find p for a given value of (¢,1.)-
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E Geometric Limits

When the governing equations are applied on the stagnation line, their limiting
forms (as £ — 0) are required. These limiting expressions contain fractions in inde-
terminant form which must be evaluated through the use of 'Hopital’s rule. This
appendix provides the finite, nonzero values of these quantities.

Asé -0,
dnb
u, =cosly — 0 rs — 0 — =0 (E.1)
d¢
and du, dcosT d
U cosI', | Iy rs .
- & Kesinly — Ky & - sin'y — 1 (E.2)
Thus,

u, cosl,

s T's

0
0
Applying "Hopital’s rule,
lim { cosl, } = lim {_____d(cos L) /d{} = Ks

-0l r, £—0 dr,/dE

Since from Eq. (2.1.4)

hy = r, (l - nCOSls)

Ts

as{—0,

hs =1, (1= nky) = rohy (E.3)

In addition to these fundamental quantities, two other terms merit attention. The
first appears in Eq. (2.4.12), the limiting form of the streamwise pressure derivative:

) 1 dp| | _ .. 1 dp, ) '
%‘i%{;;a—g,’}-&%{z dg}“so("‘” (E-4)
n? -1 1 , _l_dn, +xo lim cosI'y —ryx,
4 Yso K 61—% u, df F0 ¢ ud

5 L lﬁs_w.
e 5]_{% u, d€ Usu s
Applying PHopital’s rule:

lim{M} = ]im{———1—~ [n‘s sinl'y — r,(il—'? — K sinF,]}

£—0 u3 §—0 | Juln,sin I,

S
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so that

. cos['y — rsks 1 .. 1 dk,
P—T){ ud } T 3Ky P—g(]){u, d€ } (E-5)

Thus,

=1 ] 2 lim _l_dn‘, + lim —1—(—121 — v, K
2 By €0 | Us dé ¢—0 | u, d€ 0%

A second term to be evaluated appears in Eq. (2.4.16), the limiting form of the

streamwise derivative of n:
1 On Vs cos [y — 7sKs
li _—— =(l —n)-=21 —_— .
S { AIREE T s | (ED

Note that

) cos [y — reks . cosIy) . cos [’y — TyKs 1 .. 1 dk,
lim{ ———— % = lim { } lim = lim{ —
¢—0 u’r, é~ol ry J&o0 ud 3Kag €0 | us d€

so that
. 1 On _ (n—1)vsy .. 1 dk,
%l—r'lfll{r, 0¢ n} T bk, P—{% us d (E8)
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F Shock Properties

Boundary conditions along the body and at the shock wave (in the form of jump
conditions) are required for the solution of the governing equations. The jump con-
ditions across the shock vary according to the chemical nature of the flowfield. This
appendix provides the jump conditions for perfect gas, equilibrium, and nonequilib-
rium flows.

In the shock-normal system

=ul=V>cosl,

3 o0

8*

* Yk
vy, = Visinl, u
From the conservation equation
* ok k%
Pxolos = PuVs
From the momentum equation

*2

Pl P02 = 0} 4 il = B+ v

From the energy equation

o2 v*?
by, + —éﬁ = hy + %
Writing these equations in nondimensional form (see Appendix A) yields
u, = cos I, (F.1)
psty =sin 1’ (F.2)
Ps + vssin [’y = po, +sin’ T, (F.3)
he + %2 = b+ T2 L (F.4)

<

Substituting Fq. (F.2) into Eq. (F.3) gives

1
Ps = Poo + sin’ Ty (1 - p_) (F.5)
Substituting Eq. (F.2) into Eq. (F.4) gives
. 2 o
hy = ho + S0 L (1 - %) (F.6)

The derivative of the u, with respect to ¢ appears in the streamwise momentum
equation, while Maslen’s relation for the streamwise pressure gradient requires the
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¢-derivatives of p, and v,. First, differentiate Egs. (F.1), (F.2), (F.3), and (F.4) with
respect to £ to obtain

(flu{s = Kysin s (F.7)
dv, 1 dp,]
-2 = —— |Kkycos 'y + v, F.8
Z -~ [ : (£8)
cfjpg = —2K,sin [y cos I’y + vskgcos s — sin Fs% (F.9)
and dh d
d{’ = —ngsin [ycos 'y — Us"d%" (F.10)

respectively.
The closure of the above two sets of equations requires the use of the equation

of state and the definition of enthalpy. It is advantageous to use different forms of
these two expressions for various flowfield regimes. Thus, at this point the discussion
branches into three such areas: perfect, thermally perfect, and chemically reacting

gases.

F.1 Perfect Gas

For a perfect gas, the specific heats are constant so that enthalpy can be expressed

b = Co*TY

s

which gives

hy=Cp T =T, (F.11)
From the equation of state )
Ps = psRairTs (F12)
where .
) R*.
Rair = —fﬂ'
CPOO

Egs. (F.2), (F.3), (F.4), (F.11), and (F.12) provide five equations for five un-
knowns. They may be solved algebraically (see [76] for details) to get

2sin’ Ty v—-1
, = s F.13
PETAT A DG (719
‘/2 Sl
5, = (v + 1) MZ sin T’y (F.14)

24 (y— 1) ME sin? I’y

T,=P T (F.15)
psy — 1
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sinl’,
vy = F.16
- (F.16)
Further, since differentiating Eq. (F.14) with respect to £ gives
dp, _ —4k,p*cos T,
d€ (v +1) M2 sin®T, (F.17)
equations Egs. (F.8) and (F.9) become
dv 4 1
> = s T, ; - .
& =P T My ST, T b (F.18)
dp, 4 . 4k,sinT; cos I,
= — Vs Fs‘ w1‘3'——““ .
& 7+1n sinl’y cos o (F.19)

F.2 Nonequilibrium Flow

As noted in Chapter 5, for a chemically reacting mixture, the enthalpy is given by

N,
h = Zcih,-
i=1

so that N

dh = C'pde + ;h,-dc,-
For nonequilibrium flowfield calculations, it is assumed that the flow is chemically
frozen through the shock wave. Thus, behind the shock

dC,’ =0

so that
dhy, = C,,dT, (F.20)

where

Cp, = "'Ozoocpo2 (Ts) + CN2OQCPN2 (1)

In addition,
he = 010000, (T0) + Chy o o, (T5)

From the equation of state

R.
y = pg——-T F.21
P P M ( )

asr

where R
R _ u
u

T O
CPoo
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Differentiating Eqs. (F.20) and (F.21) with respect to £ gives
dh, dT,

%= O (F.22)
dp, Ru [ dT, . dps |
o LT P R .
&~ Mo [” & d&] (F.23)

Combining Egs. (F.22) and (F.10), substituting the result into Eq. (F.23), and
using that expression with Eq. (F.8) gives

Mu:'rdps Ks :
P e

de = . o2 (F.24)
8 Cps
Substituting Eq. (F.8) into Eq. (F.9) yields
dp, 1 dps ., o ¢ -
E-E— = { dE — 2k5cos [y [vs —sinl s]} (F.25)
Equating Egs. (F.24) and (F.25) gives
s~ Vs i s 8 1 .
n,cosI‘,{(v P snnF)_2[2+ ](v,—sml‘,)}
dp-’ = CPS vs CPS (F 26)
d€ Mair . Zi + __1__ )
R. v Ch,
Substituting Eq. (F.25) into Eq. (F.8) gives
(fivg = 2k5co0s |y (—l; — l) — —pl—s [K, cos [y + 1—)1:(32’} (F.27)

F.3 Equilibrium Flow

For an equilibrium chemically reacting mixture of perfect gases, the definition of
enthalpy is
hs = ha(ps, Ts)
Typically, equilibrium air models must be employed in the form of “table look-up”
or “curve fit” procedures. Since the energy equation is cast in terms of h, the model
used here is of the form

T, = Ts(ps, hs) Z, = Zs(ps, hs) (F°28)
From the equation of state )
Ps = psZ.sRairTs (F29)

In general, algebraic expressions for the derivatives of p, and v, with respect to £ are
difficult to obtain in the manner applied in the previous two regimes. The approach
taken in this work is detailed in Section 4.3.
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G Chemically Reacting Flows

The governing equations as presented in Appendix B may be applied to equilib-
rium flows, as will be discussed later in this appendix. For chemical nonequilibrium
flows, expressing the energy equation in terms of 7', rather than % is beneficial since
the chemical finite rate equations are dependent on 7T'. First, rewrite Eq. (B.14) as

u Oh Oh u Jp Bp
dq 1 0hy 1 Ohy du  u Ok’
T T {“I(mﬁ he On ) +“(an " On

For perfect gas flow, the heat flux in the n-direction is

* LoT*

q = 671* qc (G.2)
so that in nondimensional form (see Appendix A),

or
—_— 2 —_—
q=—¢ k@n qc (G.3)

where the subscript ¢ denotes the energy flux due to conduction in the normal direc-
tion. Since

dh = C,dT
this may be written as
- 2 Nl dh
4=9= Prim (G.4)

which is the representation used in Eq. (B.14).
For chemically reacting flow, the effect of diffusion must be included. Thus,

" =q;+q; (G.5)

where ¢ is the energy flux due to diffusion in the normal direction. This term can
be expressed as

N, 3c,

l;:-pz im t

where Dy, is the multicomponent dnffublon coefficient, N, is the number of species
present in the mixture, and ¢; is the mass fraction of species ;. Define the Lewis
number, which is the ratio of the mass diffusivity to the thermal diffusivity, as

p*CV *D*

Lein = ——f—" (G.7)

(G.6)

on*
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Now Eq. (G.6) may be rewritten as

N k*Le, m s dc; »
=2tz (G.8)

i=1

Written in nondimensional form,

= ¢+ q4 (G.9)

and
kLe; my _.i

on

(G.10)

= _sz

1=

In the case of equilibrium flow, the conductlon and diffusion quantities are com-
bined through the following procedure. From Egs. (G.4), (G.9), and (G.10),

ar  NoklLem, Oc
k— = hi— .
1= { 6n+§ Cp; 8n} (G-11)
For a gas in local chemical equilibrium,
dc; de;
le; = —| dT + —| dj .
de; = > T+ s P (G.12)
14
and ol Oh
(4
dh= —| dT'+ | d .
L= o ) + i P (G.13)

where the subscripts p and T denote constant pressure and temperature, respectively.
Assuming constant pressure in the normal direction gives

ac,' N 8c,- 6T ‘
n - 9T On (G.14)
oh  Oh 07 o7 (G.15)

gn 0T 0n  on
and Eq. (G.11) can be rewritten as

dT kLe,m BTac,-
=" { n 12: Cy, 6n5?f} (G.16)

or

aoT aT oT
_ et ) . ]
g= —¢€ {kan + k, ('?n} kr—— o (G.17)
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where the reaction conductivity (due to diffusion) is

N kLe;m, Oc
kr — 1,m i_z
2 . Mar

=1 Pf

(G.18)

This definition of total conductivity (kr) can be used to define an equiltbrium Prandt]
number:

1Cy
kr
This quantity is also referred to as the total or reactive Prandtl number. Substituting
into Eq. (G.16) gives

Preq = (Glg)

ZPC or _ 2 H _8_&
Preg on ‘ Pr., On (G-20)
By combining Eqgs. (G.20) and (G.1), it is seen that Eq. (B.14) can be used for both
perfect gas and equilibrium flows (provided Pr., is used).
For nonequilibrium flows, substituting Eq. (G.11) into Eq. (G.1) gives

uoh JOk)_udp  Op_
hl 83 871 h]aS 3n
a [ or OT (1 6k, 1 Oh, du  u dh\?
2) 2 . it A T d el St
‘ {a [’“an] o (h1 on (9n) “‘(an h Bn) (G.21)
O |NokLeim, Oc;| DNokLeim, Oci (1 0hy 1 Ohs
— —h;,— h;— —_—
*on [; Gy, 3n} T G,y om (hl an " e an)

The variable A still appears on the left hand side of the above equation. Note that
for a mixture of thermally perfect gases

h=h(e;,T Zc, hi(

Therefore,
N,

_1 N-’
dh = Zc,dh + Zh dc; = Zc,-—a’] Zhidci
1=1

i=1 =1
Thus,
N,
S SRS WAL

Since the frozen specific heat is given by

N,
Cpf = ZC,'CP'.
=1
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this can be wrilten as

Similarly,
Oh o ar ac,
on Coy on Zh

Substituting into Eq. (G.21) gives

LR dc; ,C)I Jc; udp Bp
”( [Pfa Zh ] [’Pfa Zh ]) s on

o [ aT] 8T (10h, 10k Ou  u Oh\’
2) Y YL 1 3 i _______l
¢ {an [A (’)n] + k(? (h. on t ha ()n) T (871 hy an) (G.22)

o | kLc,-m dc; I.Le1 m 1 Ol 1 Ohs
on [‘2 G,y m} (s +h—3‘a‘;)}
If the assumption of binary diffusion is madc,

. or dc; , 0 Bc, u Jp dp
p(hl {ija +Zh, ]+v[6pfd +Z D e Von

g [ ar] 8T (10h 10k du  u Ok
R e B Ly -2 — - .
¢ {Bn [k(')n] t on (hl on * hs an) tH (Bn h, On (G-23)
9 |sxkLen, dcl kLexz ac, 1 8hy | 1 0hy
— ] 23
s [; Cyp Z N on \ ki On | ks On
Based on the binary mass diffusivity, ’D12, the definition of the binary Lewis number
is
*C}V *D*
[1(’12 = /')-——%——lz (G24)

In addition to modifications to the energy equation, calculating flowfields with
finite-rate chemistry requires the solution of the species conservation equation for
each chemical species in the mixture. An excellent derivation of this equation is
presented in [77]. The final result is repcated here:

w e | LO0c\ ., OTF . 1 0k 1 k3
(h Js* tv Bn) O o Ji (h (9n*+ h3 Bn*) (G.25)

where 1} is the rate of production term for species 1 and J;* is the diffusion mass flux

term of species 7. This binary diffusion mass flux term is defined by Fick’s law to be

dc;
J'=-p DlZa " (G.26)
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which can be written as
A de; I de;
’.*: [ :_‘.-_L;,—-A .2
J. Gt Pon T TP e (G.27)

Using the definitions of Appendix A] Eq. ((3.25) is rewritten below in nondimen-

stonal forni:

w de; o de) L oT I dhy 1 Jhy
g (hl Ds v UN) S { Un + (/1, In + hy On )} (G.28)
where . . )
. ¢
Ji = “Z‘“’“"on (G.29)

Substituting Eq. ((:.29) into Eq. (G.23) and rearranging yiclds
()2 B )
%(%[k%} +A-g% (i%’g%%) o (-gl—‘f—%%%)z} (G.30)

{5 (55 i) L

Combining Eq. (G.28) and LEq. ((.30) gives

w JT ar w Jp Bp
C, p— 1) 0 _
P (/rl Js + Ut)n)

Iy Js ()n
. A o . 2
O[O 0T (o o) (o wom))
‘ {(')u [1\ (‘)n] + 4 dn h. on + hy On T on hy On (G31)

—(‘ZZJ‘ ”*a Zh w;
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H Reaction Rates

In nonequilibrium flows, the chemical reactions proceed at a finite rate. The
production terms (w; for each species ¢ in the mixture) appear in the energy equation
(when formulated in terms of temperature) and in the species continuity equations.
A discussion of these production terms is presented below.

Consider as an example, the dissociation of diatomic oxygen:

3

*

0, + M. -5 20+ M, (H.1)

where M. is a collision partner (or catalytic third body). Catalytic bodies are those
collision partners which do not undergo a chemical change during the reaction. From
empirical results, the rate of formation of O can be written as

d
dt*
where k* is the forward reaction rate cocflicient which is a function of T* only, and

each bracketed term represents the concentration of that substance (in moles/cm®).

The reverse (backward) reaction is

(0] = 2k} [02] [M;] (H.2)

A*
Oy + M, =20+ M, (H.3)

so that the rate of reduction of O is

d

(0= =247 [0 (M) (H4)

Combining these two elements gives
Oy + M, =20+ M, (H.5)
so that the net rate of O formation is
L 0] = 247 (0] (]~ 265 [OF M (H.6)
For the more general case of a multicomponent gas with N, distinct reacting

chemical species and N, simultaneous chemical reactions, the stoichiometric relations
for the overall change from reactants to products are:

S Xr = 3 G s (H.7)
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where r = 1,2,..., N; and N, is equal to the total number of the reacting species (N,)
and catalytic third bodies (V.). The quantities a;, and f;, are the stoichiometric
coeflicients for reactants and products, respectively. The variable X! denotes the

concentration of species ¢ (or catalytic third body ¢ — N,):

v . Ci moles
Xr=p! YR [ g ] (H.8)
In the above example,
aoz——-] 0()20 aMrzl
Bo, =0 Po =2 Bm, =1
For the r-th reaction of Eq. (H.7), the forward rate of production is
dX? - T e
( 3 ) = (Bir = i) K, JT (vep*)™ (H.9)
r =1
while the backward rate is
dX; A
( e ) == (Bir — aiy) k3, IT (vip™)™ (H.10)
r i=1
so that the net rate of production [78] is
w* dX;: Ne Ne 5 1.
() =(52) = —aur) [k, TT (o' = k5, TLwe?)%r | (811)
M'. r dt r 1=1 =1

where p* is in gm/cm®. The net mass rate of production of the i-th species may be
obtained by summing (Eq. H.11) over all the reactions N,:

oy LOci Ny dp? N dX} gm
CE P e T = (dt*)r B Mi; A [cm3-s] (H.12)
or
w! i )
S =ML (B — i) (k;, - B;,) (H.13)
r=1
~where
*  N¢ N¢
G =TT (rip®)™ = ke TT ()™
1=1 =1
b T 8 A
Z,,- _ _*L H (71{’*) o A*Tp*ﬁr H (71) v
1=1 =1
N
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Table H.1. (‘,h;:mi(:ul Reactions

r Reaction M.,
1 02 + M1 = 20+ M1 N), 02, 0, NO, N
ol N, + My = 2N+ M, N,, Oy, O, NO
Al NO+ My= N+ O+ M| Mo, Oy, 0O, NO, N
6 N, + 0 = NO+ N
71 N+ O = NO' + ¢
N
:Br = E/Bi,r -1

1=1
The mole-mass ratio (or mole number), v, is defined as
Ci X . ,
_/\711_-: p: cfori=1,2,..,N;
t
Yi = (H.14)

N,
Z ZioN,nYn » fori= N,+1,..., N
n=1

where Z;_n, n 1s the catalytic efficiency of third body M,_n, for specie n. Written in
modified Arrhenius form, the reaction rates are

* vk * -1 Cm3 arw
k3, = Ap T By, exp(——[DN/T ) 3 (mole) (H.15)
L
Pk g At s * —1 Cm3 ﬁr}
.;T — Ab,rr By, CXP(_JDb,r/T ) I s (mole) (Hlﬁ)

where T* 1sin K .

In this study, a seven-species model [15] for air is used. Table H.1 lists the reactions
and third bodies which are considered. The cfficiencies of the catalytic third bodies
are given in Table H.2 for the various reactions. Finally, the forward and backward

rate coefficients are presented in Table H.3.
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H. REACTION RATES

Table H.2. Third Body Efficiencies Relative to Argon

Efficiencies

=)

Catalytic T~ N, N2 2

Bodies 1=111

N 0 NO | NO*
1=3|t=4|:i=5|1

M] 1

M2 2 .

M4 3 1
4

e

[ Q)
an
© — o] |l

1 25 1
0 1 1
20 20 20
0 0 0

- o o ol

Table H.3. Chemical Rate Coefficients

3

[em® /mole-sec]

ky,
[’ /mole-sec] or [em® /mole? -sec]

= 4 B A U Ny

3.61 x 10 T-Texp( -5.94x107/T)
1.92x 10" T ~%%exp(-1.131 x 10%/T')
4.15x10%2T~"%exp(-1.131 x 10%/T)
3.97x10%T - Sexp( -7.56x10%/T)
3.18x10° T exp( -1.97x10*/T)
6.75x10"3 exp( -3.75x10%/T)
9.03x10° T%% exp( -3.24x10*/T)

3.01 x 10187-05

1.09x 106705

2.32x10217-15

1.01x10%7-15

9.63x10"'T%% exp(~3.6 x 103/T)
1.50x 103

1.80x10'97-1.0
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I Species Thermodynamic
Properties

For nonequilibrium flows, species thermodynamic properties are required for each
species present in the fluid. Ref. [60] has provided curve fits for Cy. and h? for the
temperature range of 300K < 7% < 30000 K-

specific heat:

Y

= Ay AT AT AT AsT* (L1)
static enthalpy:
h* A, T* A T*2 A T*3 A T*4 .As
208.15 _ 2 3 4 5 —
RS T* A+ 2 + 3 + 4 + 5 t T (12)

The subscript i denotes the i-th species as given in Table 5.1. The temperature range
cited has been divided into five sub-ranges with each sub-range curve fit with the
above polynomials. Coefficients A, through As are presented in Table L1, grouped
according to these sub-ranges. The Ag coeficients are related to the heats of forma-
tion of their respective species (and therefore invariant with temperature). They are
located in Table 1.2, along with the species heats of formation.

Note that the enthalpy from Eq. (1.2) is referenced to a temperature of 298.15K.
The specific enthalpy for a reference temperature of OK is desired. This can be

calculated using the relation

hr= by = ki, o+ Akl — AR

1298.15

ouys T 29815 C;i,,, (1.3)
where the first term on the right hand side is obtained from the above curve fits.
The second and third terms (which are the heats of formation at 0K and 298.15K,
respectively) are provided in Table 1.2, while the perfect gas values of C. are presented
in Table 5.1.
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1. SPECIES THERMODYNAMIC PROPERTIES

Table I.1. Constants for Polynomial Curve-fits of Thermodynamic Properties

Species A A As Ay As
300K < T* < 1000K .
Ny 36748101 —.12081x10-%  .23240x10~% —.63218x10~° —.22577x10~!12
0, 36146x10'  —.18598x10"%  .70814x10-5 —.68070x10~8 2162810~ 11
N .25031x10!  —.21800x10~4 .54205x10~7  —~.56476x10~1° .20999x10~13
0 28236x10!  —.89478x10"%  83060x10~% —.16837x10~° —.73205x10-13
NO .35887x10!  —.12479x10~%  .39786x10~° —.28651x10-8 63015x10~12
NO* 35294x 100 —.30342x10"3  .38544x10~®  .10519x10~8 —.72777Tx10"!2
e .25000x 10! .00000x10° .00000x 10° .00000x10° .00000x10°
1000K < T* < 6000 A
N, .32125x 10! 10137x1072  —.30467x107°  41091x10~1% — 20170x10-14
0, .35949% 10! 75213x107%  —.18732x107%  27913x10-1° - 15774x10-14
N .24820%10! 69258x10™% —.63065x10~7 J18387x10710  —.11747x10-14
0 25421x107  —.27551x10~% —.31028x10~%  .45511x10~1! — 43681x10-15
NO .32047x10! 12705x1072  —.46603x10-%  .75007x10~!° —.42314x10-14
NOt .32152x 10! 99742x10~3  —.29030x10°  .36925x10~1° —.15994x10~14
e .25000x 10! .00000x10° .00000x10° .00000x10° .00000x10°
6000K < T* < 15000K .
No .31811x10! 89745x10-3  —.20216x10"%  .18266x10-1° —.50334x10~15
0 .38599x 10! 325101073 —.92131x10~% —.78684x10~1>  .29426x10~16
N 27480x101  —.39090x10~°  .13380x10"® —.11910x10~10 .33690x10-1%
0 .25460x10!  —-.59520x10~*  .27010x10~7 —.27980x10~1! .93800x10-16
NO .38543x 10! 23409%x1073  —.21354x10~7  .16689x10-11 - 49070x10~16
NOt .26896 % 101 13796x10~2  —.33985x10"%  .33776x10"1° —.10427x10-14
e .25000x 10! .00000x10° .00000x10° .00000x10° .00000x10°
15000 K < T* < 25000 K
No 96377x100  —.25728x10"2 33020x107%  —.14315x1071° .20333x10~15
0, .34867 x 10! 52384x1073  —.39123x10-7  .10094x10~'! — 88718x10-17
N —~.12280x 10! 19268x1072  —.24370x10-° 12193x10-10  —.19918x10~13
0 —97871x10~2  .12450x10~2 —.16154x10~°  .80380x10~1! —~.12624x10-15
NO 43309x101  —.58086x10~*  .28059x10~7 —.15694x10~!! .24104x10-16
NO* 59346x10'  —.13178x10~%  23297x10~¢ —.11733x10-1°  .18402x10-!%
e .25000x 10} .00000x 10° .00000 % 10° .00000x10° .00000x10°
250001 < T* < 30000/
N -.51681x10" 23337x1072  —.12953x10°%  27872x10~1! —.21360x10"16
0, .39620x 10" 39446x1073  —.29506x10~7 73975x10~12  —.64209%x10~17
N 15520102 —.38858x107%  .32288x10° —.96053x10~1! .95472x10-18
0 .16428x102  —.39313x1072  .29840x10~¢ —.81613x10~1! 75004x10~1¢
NO .23507 x 10! 58643x10™3 —.31316x10-7  .60495x10~!2 —.40557x10~17
NO* | —.51595x10! 262901072 —.16254x10°¢  .39381x10~!' —.34311x10~16
e .25000% 10} .00000x10° .00000x10° .00000x10° .00000x10°




Table 1.2. Heats of Formation

Species | AhYy, | AR Asg
[kcal/gm-mole]
N, 0.0 0.0 —.10430x 10*
O, 0.0 0.0 —.10440x 10*
N 112.973 | 112.529 56130x10°
0 59.553 n8.984 29150 x 10°
NO 21.580 21.457 .97640x10*
NO* | 236.660 | 235.180 11840% 10°
¢ 0.0 0.0 ~.74542x10°

173
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J Species Transport Properties

For nonequilibrium flows, species transport properties are required for each species
present in the fluid. For the temperature range of 1000k < T* < 30000K, the species
transport properties are defined by the curve fits of Ref. [60]. The expression for
viscosity 1s

pr=e [C“i] T [Au,- InT* + Bui] , |gm/cm-s| (J.1)
where the species coefficients are given in Table J.1. The frozen thermal conductivity
is given by

.4 3 Tn 2 v 42k 3
kr = e[E”i] T [Ak" (InT*)"+ By (In77)" + Ci, InT7 + Dki] , [eal/em-s-K] (J.2)

with the species coefficients located in Table J.2.
The ionic species viscosities and frozen thermal conductivities as defined by the

tabulated coeflicients are for the limiting electron pressure, which is defined as

*

T 4
Pi.e = 0975 (1000) , [atm] (J.3)

These values should be corrected by employing the following formula [61]:

A . p* 2
17 (pel) _ kt (pcl) _ - 1 (']4)

i (p:’mu) ks (p’,‘,m”) - In [.0209 (___1__*__)“ +1.52 (L)Bls]

1000p*, % 1000p%,'%

The local electron pressure is

p5 = N.KpT™ | [atm] (J.5)

Table J.1. Constants for Viscosity Curve-Fits

Species | A, B, C,
N, 0.0203 0.4329 -11.8153
O, 0.0484 -0.1455 -8.9231
N 0.0120 0.5930 -12.3805
0 0.0205 0.4257 -11.5803
NO 0.0452 -0.0609  -9.4596
NO* 0.0 2.5 -32.0453
e 0.0 2.5 -37.4475
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Table J.2. Constants for Frozen Thermal Conductivity Curve-Fits

Species Ag By Ck D Ey
N 0.03607 -1.07503 11.95029 -57.90063 93.21782
0, 0.07987 -2.58428  31.25959 -166.76267  321.69820
N 0.0 0.0 0.01619 0.55022  -12.92190
0 0.0 0.0 0.03310 0.22834 -11.58116
NO 0.02792 -0.87133  10.17967 -52.03466 88.67060
NO+ | -0.06836 2.57829 35.72737  219.09215 -519.00261
e 0.0 0.0 0.00032 2.49375  -27.89805

where N, is the clectron number density and Kp is Boltzmann’s constant. In the
present work, an electron pressure of 1 atm is assumed everywhere so that the above
correction reduces to

: 3 2
po ok = (3.6)

i (ptlmaz‘) k; (p:,mu) In [0209(_21*_)4 + 152( T )8/3]

1000 1000
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K Conic Shock Shape

Define the shock shape with a conic equation:
r? =2C,z, — b,2? (K.
Differentiating Eq. (K.1) with respect to £ gives

dr ] cos I’
—2 = (Cy — byzy) —= =sin I, .
& (Cs — byzy) . sin | (K.2)

Differentiate Eq. (K.2) with respect to £ and rearrange to get

Kgl'g

=sin? [, + b, cos® T, (K.3)

-
cosI',

Now differentiate Eq. (K.3) with respect to £ to get

d [ KsTy o
% (cos I‘,) =2k,sinl';cos [y (by — 1) (K.4)

Utilizing the product rule of differentiation,

d(fi,f‘_.,)_ i( T, )+ T, dK, (K.5
df \cosT, _K’df cosl’, cos 'y dé 5)

so that

.
drk, cosT,

[2:@, sin’ycos Iy (b — 1) — &, (tan r, - -%—n, sin P,)]
cos?T,

e,

That is,

de cos?’ T sinT’ KsT

S — s 2 3 s S y — 1 _ 3 . s$'s .

d¢ 8 [ sin Ts (b ) Ts <1 cos? F,)] (K.6)

Substituting Eq. (K.3) and rearranging gives
2 I
‘fi';’ = 35,0 0,22 (b, - 1) (K.7)

On the stagnation line, Eq. (K.7) has the following limiting form:

1 dx, 9
i = 3ry, % (by — K.8
ﬁ-‘l‘é{cosrs de } 3hag” (b = 1) (K.8)
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I. Cubic Shock Shape

Define the shock shape in the region between the previous and current marching
stations with the following cubic equation:

o r 7
Py = o 4 11 (Az,) + 5 (A2)" + 33, (Az,)? (L.1)
where
Azy = 24— 25, _,

The axial position of the current station 1S 25 = gy, while the previous station is at
. Differentiating Eq. (L.1) with respect to z, gives the shock slope:

Zy = Zgy_,

=+ 7 (Azy) + 2 (Az,)? = tan T, (L.2)

2

dr

dz,

Differentiating Eq. (L.2) with respect to z, gives

Ers G 4y (Az) =~y cos™T L
22 = Fp + 73 (Azs) = —Ksc087 " I (L.3)
One more differentiation yields
&r,
dz3 o (L4)

Now focus on the previous station (k— 1), where this current shock segment meets
the previous segment (between stations k — 2 and k — 1). The shock geometry here
was determined from this previous segment. Requiring a continuous position, slope,
and curvature across this juncture (where z, = 25, _,) gives

. . dr, . dr,
7‘0 = 7’" T] = T2 =
k-1 - 2
dzy k-1 dzs k-1

However, from Eq. (L.4), note that the curvature derivative is not continuous between
shock segments. In fact, the derivative’s value is invariant along the length of a given

segment.
Eq. (L.3) can be rewritten as

T3

1 d*r, d*r,
T Az, | d2? dz?

} (L5)

so that Eq. (L.4) becomes .

3, 2 2
d’r, 1 {d rs d°rg } (L.6)
k-1

= .2 2
z dz?

dz3 Az 2
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which is simply a two-point backward difference representation of d?r,/dz2. Substitute
this definition of 73 into Eq. (1..1) to get

dr,

&z, (L.7)

Azl [2 d*r, d’r,}
6 dz? |, _,  dz?

s

re =rs, _, + Az

k=1

which defines the shock segment in terms of values at the previous station. Similarly,
Eq. (L.2) can be written as

dr, dr, Az, [d2r, dzr,}
= ot (L.8)
dz,  dz,|,_, 2 [ d:f|,_,  d2?

to yield an expression for the shock slope between stations & — 1 and k.
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